

BHADRAK ENGINEERING SCHOOL & TECHNOLOGY (BEST),

 ASURALI, BHADRAK

MICROPROCESSOR

 &

MICRO-CONTROLLER

(Th- 03)

(As per the 2020-21 syllabus of the SCTE&VT,

Bhubaneswar, Odisha)

Fourth Semester

E&TC & CSE Engg.

Prepared By: Er B.R.Nayak

MICROPROCESSOR & MICRO-CONTOLLER

CHAPTER-WISE DISTRIBUTION OF PERIODS & MARKS

SL.

NO.

Chapter/

Unit No.

Topics Periods

as per

Syllabus

MARKS

1 01

Microprocessor
(Architecture and

Programming-8 Bit-8085)

15 20

2 02

Instruction Set and

Assembly Language
Programming (8 Bit)

15 15

3 03 TIMING DIAGRAMS 07 20

4 04

Microprocessor Based
System Development
Aids

11 15

5 05

Microprocessor

(Architecture and
Programming- 16 Bit-8086)

12 15

6 06

Microcontroller

(Architecture and

Programming-8bit)

15 15

 TOTAL 75 100

1

CHAPTER-01

Microprocessor (Architecture and programming-8 bit-8085)

Learning Objectives:

1.1- Introduction to Microprocessor and Microcomputer & distinguish between them.

1.2- Concept of Address bus, data bus, control bus & System Bus

1.3-General Bus structure Block diagram.

1.4- Basic Architecture of 8085 (8 bit) Microprocessor

1.5- Signal Description (Pin diagram) of 8085 Microprocessor

1.6- Register Organizations, Distinguish between SPR & GPR, Timing & Control

Module,

1.7- Stack, Stack pointer & Stack top.

1.8- Interrupts: -8085 Interrupts, Masking of Interrupt (SIM, RIM)

1.1- Introduction to Microprocessor and Microcomputer & Distinguish

Between Them

 A microprocessor is a programmable electronics chip that has computing and decision-making

capabilities similar to central processing unit of a computer.
 Any microprocessor- based systems having limited number of resources are called microcomputers.

Nowadays, microprocessor can be seen in almost all types of electronics devices like mobile phones,

printers, washing machines etc.
 Microprocessors are also used in advanced applications like radars, satellites and flights. Due to the

rapid advancements in electronic industry and large-scale integration of devices results in a

significant cost reduction and increase application of microprocessors and their derivatives.
 Bit: A bit is a single binary digit.

 Word: A word refers to the basic data size or bit size that can be processed by the arithmetic and

logic unit of the processor. A 16-bit binary number is called a word in a 16-bit processor.

 Bus: A bus is a group of wires/lines that carry similar information.

 Memory Word: The number of bits that can be stored in a register or memory element is called a

memory word.

Difference between microprocessor and microcomputer.

1- Microprocessor is one

component of a microcomputer.

2- Microprocessor is a programmable

1-A digital computer in which one

microprocessor is used as a CPU known as

microcomputer.

2

integrated circuit which has its own

decision-making capability.

Example-8085,

INTEL8086,8088,8008,8080.etc.

2-Microcomputer uses a microprocessor for its

processing operation.

Example-Desktop, Laptop, Note Book etc.

1.2- Concept Of Address Bus, Data Bus, Control Bus & System Bus

Address Bus: It carries the address, which is a unique binary pattern used to identify a memory

location or an I/O port. For example, an eight-bit address bus has eight lines and thus it can address 28

= 256 different locations. The locations in hexadecimal format can be written as 00H – FFH.

Data Bus: The data bus is used to transfer data between memory and processor or between I/O device and

processor. For example, an 8-bit processor will generally have an 8-bit data bus and a 16-bit processor

will have 16-bit data bus.

Control Bus: The control bus carry control signals, which consists of signals for selection of memory or
I/O device from the given address, direction of data transfer and synchronization of data transfer in case
of slow devices.

System Bus: The system bus is a group of wires/lines used for communication between the

microprocessor and peripherals.

1.3-General Bus Structure Block Diagram.

Bus is a group of conducting wires which carries information, all the peripherals are connected to

microprocessor through Bus.

Diagram to represent bus organization system of 8085 Microprocessor.

3

There are three types of buses.

Address bus –

It is a group of conducting wires which carries address only. Address bus is unidirectional because data flow

in one direction, from microprocessor to memory or from microprocessor to Input/output devices (That is,

Out of Microprocessor).

Length of Address Bus of 8085 microprocessor is 16 Bit (That is, Four Hexadecimal Digits), ranging from

0000 H to FFFF H, (H denotes Hexadecimal). The microprocessor 8085 can transfer maximum 16-bit

address which means it can address 65, 536 different memory location.

The Length of the address bus determines the amount of memory a system can address. Such as a system

with a 32-bit address bus can address 2^32 memory locations. If each memory location holds one byte, the

addressable memory space is 4 Bowater, the actual amount of memory that can be accessed is usually much

less than this theoretical limit due to chipset and motherboard limitations.

Data bus –

It is a group of conducting wires which carries Data only. Data bus is bidirectional because data flow in both

directions, from microprocessor to memory or Input/Output devices and from memory or Input/Output

devices to microprocessor.

4

Length of Data Bus of 8085 microprocessor is 8 Bit (That is, two Hexadecimal Digits), ranging from 00 H

to FF H. (H denotes Hexadecimal).

When it is written operation, the processor will put the data (to be written) on the data bus, when it is read

operation, the memory controller will get the data from specific memory block and put it into the data bus.

The width of the data bus is directly related to the largest number that the bus can carry, such as an 8-bit bus

can represent 2 to the power of 8 unique values, this equates to the number 0 to 255.A 16-bit bus can carry 0

to 65535.

Control bus –

It is a group of conducting wires, which is used to generate timing and control signals to control all the

associated peripherals, microprocessor uses control bus to process data, that is what to do with selected

memory location. Some control signals are:

 Memory read

 Memory writes

 I/O read

 I/O Write

 Opcode fetch

If one line of control bus may be the read/write line. If the wire is low (no electricity flowing) then the

memory is read, if the wire is high (electricity is flowing) then the memory is written.

1.4- Basic Architecture Of 8085 (8 Bit) Microprocessor

Architecture of 8 Bit 8085 Microprocessor:

Description of Each Block:

 In 1975 INTEL corporation developed a more power full b bit MP by using NMOS Technology

known as INTEL 8085 Microprocessor.

 It is a 40-pin dual package IC fabricated on a single LSI chip.

 The INTEL 8085 uses a single +5-volt supply for its operation and its clock speed is 3 MHZ and

clock cycle is 320 nano sec.

5

Physical components of 8085 Microprocessor:

 Register set.

 Bus interface unit (BIU).

 Arithmetic & logic unite (ALU).

 Instruction decoder & Machine cycle encoder.

 Timing and control unit.

 Interrupt and serial communication.

Program Counter (PC)

 This 16-bit register deals with sequencing the execution of instructions.

 This register is a memory pointer.

 The microprocessor uses this register to sequence the execution of the instructions.

 The function of the program counter is to point to the memory address from which the next byte is to

be fetched.

 When a byte is being fetched, the program counter is automatically incremented by one to point to

the next memory location.

Increment and Decrement register

 When the instruction is fetched the value of the program counter is increment and decrement by the

increment and decrement Register.

Bus Interface unit (BIU)

 BIU consist of Address buffer or Address bus , Address and data buffer or Address and data bus.

 Address buffer or Address bus are A8-A15 and Address and Data bus are AD0-AD7.

 A8-A15 Address bus are used for MSB bits of memory Address.

 AD0-AD7, these lines are time multiplexed with address and date. They are used for LSB of memory

address.

6

Instruction Register (IR)

 The data fetch from memory is stored by IR register.

 IR only holds that type of data which is fetch from memory.

Instruction Decoder:

 Instruction Decoder Decode the instruction by 0 or 1

Timing and control unit:

 Timing and control unit provide the information through control signal to all the register present in

microprocessor.

 It controls the entire operation of the MP. So it is known as brain of the computer.

Arithmetic Logic Unit (ALU)

 The ALU performs the actual numerical and logical operations such as Addition (ADD), Subtraction

(SUB), AND, OR etc.

 It uses data from memory and from Accumulator to perform operations.

 The results of the arithmetic and logical operations are stored in the accumulator.

Register Set:

 The 8085 includes six registers, one accumulator and one flag register.

 It has two 16-bit registers: stack pointer and program counter.

 The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C, D, E, H

and L.

 They can be combined as register pairs - BC, DE and HL to perform some bit operations.

 The programmer can use these registers to store or copy data into the register by using data copy

instructions.

Flag register:

 The ALU includes five flip-flops, which are set or reset after an operation according to data

condition of the result in the accumulator and other registers.

 The five-status flag of INTEL 8085 MP are—

 Zero (Z), Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags.

 Their bit positions in the flag register are shown in Fig.

 The microprocessor uses these flags to test data conditions.

7

Stack Pointer:

 The stack pointer is also a 16-bit register, used as a memory pointer.

 It points to a memory location in R/W memory, called stack.

 The beginning of the stack is defined by loading 16- bit address in the stack pointer.

 Stack-The Stack is a sequence of memory location set by a programmer to store different element.

So, it is known as Storage device.

 Stack works by LIFO (Last in First out) Operation.

Interrupt Control:

 INTA-Interrupt Acknowledgement.

 INTR-Interrupt Request

 If there is any Interrupt generated inside MP then the Interrupt signal send the request to the

Microprocessor.

 There are 5 Interrupt signal i.e TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.

Serial input and output control:

 It has two input/output pin that is SID & SOD

 SID stands for serial input data and SOD for serial output data.

1.5- Signal Description (Pin Diagram) Of 8085 Microprocessor

Properties:

 It is a 8-bit microprocessor

 Manufactured with N-MOS technology

 40 pin IC package

 It has 16-bit address bus and thus has 216 = 64 KB addressing capability.

 Operate with 3 MHz single-phase clock.

 All the signals are classified into six Group that is

 1-address bus

 2-Data bus

 3-Control & status signals

 4-Power supply and frequency signals

 5-Externally initiated signals

 7-Serial I/O signals

Address and Data Buses:

 A8 – A15 (output, 3-state): Most significant eight bits of memory addresses and the eight bits of the

I/O addresses. These lines enter into tri-state high impedance state during HOLD and HALT modes

 AD0 – AD7 (input/output, 3-state): Lower significant bits of memory addresses and the eight bits

of the I/O addresses during first clock cycle.

8

Control & Status Signals:

 ALE: Address latch enable

 RD’: Read control signal.

 WR’: Write control signal.

 IO/M, S1 and S0 : Status signals.

Power Supply & Clock Frequency:

 Vcc: +5 V power supply

 Vss: Ground reference

 X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

 CLK: Clock output.

Externally Initiated and Interrupt Signals:

 RESET IN: When the signal on this pin is low, the PC is set to 0, the buses are tri- stated and the

processor is reset.

 RESET OUT: This signal indicates that the processor is being reset. The signal can

 be used to reset other devices.

 READY: When this signal is low, the processor waits for an integral number of clock cycles

until it goes high.

 HOLD: This signal indicates that a peripheral like DMA (direct memory access) controller is

requesting the use of address and data bus.

 HLDA: This signal acknowledges the HOLD request.

 INTR: Interrupt request is a general-purpose interrupt.

 INTA: This is used to acknowledge an interrupt.

 RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and have highest

priority than INTR interrupt.

 TRAP: This is a non-maskable interrupt and has the highest priority

Serial I/O Signals:

 SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM instruction.

 SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

9

1.6- Register Organizations, Distinguish Between SPR & GPR, Timing

& Control Module

 The 8085 includes six registers, one accumulator and one flag register, In addition, it has two 16-

bit registers: stack pointer and program counter.

 The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C, D, E,

H and L. they can be combined as register pairs - BC, DE and HL to perform some bit

operations. The programmer can use these registers to store or copy data into the register by using

data copy instructions.

Accumulator

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit data and to

perform arithmetic and logical operations. The result of an operation is stored in the accumulator. The

accumulator is also identified as register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data condition of the

result in the accumulator and other registers. They are called Zero (Z), Carry (CY), Sign (S), Parity (P)

and Auxiliary Carry (AC) flags. Their bit positions in the flag register are shown in Fig. 4. The

microprocessor uses these flags to test data conditions.

For example, after an addition of two numbers, if the result in the accumulator is larger than 8-bit, the flip-

flop uses to indicate a carry by setting CY flag to 1. When an arithmetic operation results in zero, Z flag is

set to 1. The S flag is just a copy of the bit D7 of the accumulator.

A negative number has a 1 in bit D7 and a positive number has a 0 in 2’s

10

complement representation. The AC flag is set to 1, when a carry result from bit D3 and passes to bit D4.

The P flag is set to 1, when the result in accumulator contains even number of 1s.

Difference between SPR and GPR

SPR

 1- SPR holds programme state, they usually

include programme counter , stack counter and

status register.

 2- There are 3 types of SPR are present in 8085

microprocessors. That is Instruction pointer,

Instruction registers and programme status bar.

 3- When the control unit fetches an instruction from

memory, it stores it in the instruction register.

GPR

 1-GPR can store any temporary data during

programme operation.

 2-There are 6 8 bit GPR, that are B, C,D,E,H and L.

 3-They can also used as register pair like BC,

DE,HL.It is also used as memory pointer.

1.7- Stack, Stack Pointer & Stack Top

Stack

 Stack is used to store and retrieve return addresses during function calls.

 It is also used to transfer arguments to a function. On a microprocessor it is also used to store the

status register contents before a context switch. The stack is a temporary store for data.

 There are two types of stacks they are register stack and the memory stack.

11

Stack Pointer:

 The stack pointer is also a 16-bit register, used as a memory pointer.

 It points to a memory location in R/W memory, called stack.

 The beginning of the stack is defined by loading 16- bit address in the stack pointer.

 A stack (also called a pushdown stack) operates in a last-in/first-out sense.

 When a new data item is entered or "pushed" onto the top of a stack, the stack pointer increments to

the next physical memory address, and the new item is copied to that address.

 When a data item is "pulled" or "popped" from the top of a stack, the item is copied from the address

of the stack pointer, and the stack pointer decrements to the next available item at the top of the

stack.

Stack top:

 The stack is a LIFO (last in, first out) data structure implemented in the RAM area and is used to

store addresses and data.

 when the microprocessor branches to a subroutine. ... The Stack Pointer register will hold the

address of the top location of the stack is known as Stack top.

1.8- Interrupts: -8085 Interrupts, Masking Of Interrupt (SIM, RIM)

Interrupt Structure:

 Interrupt is the mechanism by which the processor is made to transfer control from its current

program execution to another program having higher priority.

 The interrupt signal may be given to the processor by any external peripheral device

Types of Interrupts:

 Interrupts are classified based on their mask ability, IVA and source. They are classified as:

Vectored and Non-Vectored Interrupts

 Vectored interrupts require the IVA to be supplied by the external device that gives the interrupt

signal. This technique is vectoring, is implemented in number of ways.

 Non-vectored interrupts have fixed IVA for ISRs of different interrupt signals.

12

Maskable and Non-Maskable Interrupts

 Maskable interrupts are interrupts that can be blocked. Masking can be done by software or hardware

means.

 Non-maskable interrupts are interrupts that are always recognized; the corresponding ISRs are

executed.

Software and Hardware Interrupts

 Software interrupts are special instructions, after execution transfer the control to predefined ISR.

 Hardware Interrupts and Priorities:

 8085 have five hardware interrupts – INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP.

SIM Instruction:
 The SIM instruction is used to mask or unmask RST hardware interrupts. When executed, the

SIM instruction reads the content of accumulator and accordingly mask or unmask the interrupts.

The format of control word to be stored in the accumulator before executing SIM instruction.

 In addition to masking interrupts, SIM instruction can be used to send serial data on the SOD

line of the processor. The data to be send is placed in the MSB bit of the accumulator and the serial

data output is enabled by making D6 bit to 1.

RIM Instruction:

 RIM instruction is used to read the status of the interrupt mask bits. When RIM instruction is

executed, the accumulator is loaded with the current status of the interrupt masks and the pending

interrupts.

 The format and the meaning of the data stored in the accumulator after execution of RIM instruction.

In addition, RIM instruction is also used to read the serial data on the SID pin of the processor.

The data on the SID pin is stored in the MSB of the accumulator after the execution of the RIM

instruction.

Timing of Interrupts:

 The interrupts are sensed by the processor one cycle before the end of execution of each instruction.

An interrupts signal must be applied long enough for it to be recognized. The longest instruction of

the 8085 takes 18 clock periods. So, the interrupt signal must be applied for at least 17.5 clock

periods. This decides the minimum pulse width for the interrupt signal.

 The maximum pulse width for the interrupt signal is decided by the condition that the interrupt

signal must not be recognized once again. This is under the control of the programmer.

POSSIBLE SHORT TYPE QUESTIONS WITH ANSWERS

1-Define programme counter. (19-S)

A program counter is a 16 bit special purpose register in a microprocessor that contains the address

(location) of the instruction being executed at the current time. As each instruction gets fetched, the

program counter increases its stored value by 1.

2-What is the function of Stack pointer?

It is a 16 bit special purpose register. The stack pointer always points at the top element in the stack.

https://whatis.techtarget.com/definition/register
https://whatis.techtarget.com/definition/instruction
https://searchsqlserver.techtarget.com/definition/fetch

13

3-Define Stack.

A stack is stated as the container of elements where insertion and removal of the elements follow with the

last-in-first-out (LIFO) theory. Here, the insertion of elements is done through push operation and removal of

elements is done through a pop operation

4-Write the function of ALU?

The ALU performs simple addition, subtraction, multiplication, division, and logic operations, such as OR

and AND. The memory stores the program’s instructions and data. The control unit fetches data and

instructions from memory and uses operations of the ALU to carry out those instructions using that data.

5-Write the different register name of 8085 MP?

In 8085 two types of register are used.

1-General purpose register

 2-Special purpose register

General purpose are B,C,D,E,H and L , Accumalotor,Instruction register ,Temporary Register are in 8 bit.

Special purpose register are Stack pointer and programme counter are in 16 bit.

14

6-Show the bit position of Flag register. (19-W)

In 8085 microprocessors, the flags register can have a total of eight flags. Thus, a flag can be

represented by 1 bit of information. But only five flags are implemented in 8085. And they are:

Carry flag (Cy),

Auxiliary carry flag (AC),

Sign flag (S),

Parity flag (P), and

Zero flag (Z).

The respective position of these flag bits in flag register has been show the below figure. The positions

marked by “x” are to be considered as don't care bits in the flags register. The user is not required to

memorize the positions of these flags in the flags register.

7-What is carry flag and auxiliary carry flag? (19-W)

Auxiliary carry flag (Ac): Now let us consider the addition of any two 8-bit (2-hex digit) numbers, a carry

may be generated when we add the LS hex digits of the two numbers. Such a carry is called intermediate

carry also known as half carry,or auxiliary carry.

Carry Flag (CY) – Carry is generated when performing n bit operations and the result is more than n bits,

then this flag becomes set i.e. 1, otherwise it becomes reset i.e. 0. During subtraction (A-B), if A>B it

becomes reset and if (A<B) it becomes set. Carry flag is also called borrow flag.

8-What is the function of ALE.

ALE (Address Enable Latch) is the control signal which is nothing but a positive going pulse generated when

a new operation is started by microprocessor. So when pulse goes high means ALE=1, it makes address bus

enable and when ALE=0, means low pulse makes data bus enable.

9-Write different interrupt are present according to the priority order. (S-23)

They are TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR. These interrupts have a fixed priority of interrupt

service. If two or more interrupts go high at the same time, the 8085 will service them on priority basis. The

TRAP has the highest priority followed by RST 7.5, RST 6.5, RST 5.5.

10-What is the function of SO and S1.

This signal separates memory and I/O devices. Status signals(S0 and S1): These are output status signals

used to give information of operation performed by microprocessor. The S0 and S1 lines specify 4 different

conditions of 8085 machine cycles.

15

11-Define address Bus.

The address bus is uni-directional. It is concerned with passing an address one way, from the CPU to RAM.

The sole purpose of an address bus is to identify the address of the location in cache or main memory that is

to be read from or written to the processor.

12-Define data Bus.

Data bus - carries the data between the processor and other components. The data bus is bidirectional.

Control bus - carries control signals from the processor to other components. The control bus also carries the

clock's pulses.

13-Write a program to calculate time delay using one register for 8085. (S-24)

 Ans: - By using single 8-bit register.

 MVI B, 0AH

 REPEAT: DCR B

 JNZ: REPEAT

14-What do you mean by DMA techniques? Which pin of 8085 belongs to this group?

 (S-24)
Ans: - DMA (Direct Memory Access) techniques refer to a method where a peripheral device can directly

access system memory without needing the CPU for each data transfer.

Allowing faster data movement between devices and memory.

DMA are "HOLD" and "HLDA" pins are the DMA signal for 8085 microprocessors.

15-List the 16 bits register of 8085 microprocessors. (S-24)

 Ans: - The 8085 microprocessor has three 16-bit registers:

 Program Counter (PC): Stores the memory address of the next instruction to be executed.

 Stack Pointer (SP): Points to the current position in the hardware stack.

 Incremented/Decremented address latch register: A 16-bit register.

16-Calculate the memory capacity of a microprocessor of 14-bit address line. (S-24)

 Ans: - A byte is 8 bits, so if a memory has a 14-bit address, it means it can store 2^14 = 16384 bytes of data

 Or 16 KB memory capacity.

LONG TYPE QUESTIONS

1-Explain the Architecture of 8085 MP with neat block diagram?

2-Explain the pin configuration of 8085 MP? (19-W)

3-Write soft notes on

 Stack, Flag register,8085 Busses

4-Draw the different bits of the flag register of 8085 microprocessor explain the function of

each flag. (S-24)

5-State and Explain stack, stack top and stack pointer. (S-24)

6-Draw the pin diagram of 8085 microprocessor and explain the function of each pin. (S-24)

16

CHAPTER No.-02

Instruction set and Assembly Language Programming(8-Bit)

Learning Objectives:

2.1-Addressing data & differentiate between one-byte, two-byte & three-byte instructions

with examples.

2.2- Addressing modes in instructions with suitable examples.

2.3- Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack& I/O ,

Machine Control

2.4-Simple Assembly Language Programming of 8085- Simple Addition & Subtraction.
Logic Operations (AND, OR, Complement 1’s & 2’s) & Masking of bits. Counters & Time
delay (Single Register, Register Pair, more than Two Register). Looping, Counting &
Indexing (Call/JMP etc.). Stack & Subroutines programs. Code conversion, BCD Arithmetic
& 16 Bit data Operation, Block Transfer. Compare between two numbers. Array Handling
(Largest number & smallest number in the array).

2.5-Memory & I/O Addressing

2.1-Addressing Data & Differentiate Between One-Byte, Two-Byte & Three-

Byte Instructions with Examples.

One byte, two byte & three-byte instruction with example.

 According to the length, the instruction of 8085 microprocessor is classified into 3 types.

 1-Single byte instruction

 2-Two-byte instruction

 3-Three-byte instruction

Single byte instruction

 In single byte instruction only opcode is present, there is no operand.

 Examples-MOV A, B, ADD B, CMA In these instructions only opcode is present so these are the

single byte instruction.

 The length of this instruction is 8 bits. Each instruction requires one memory location.

Two-byte instruction

 In two-byte instruction the first 8 bit indicates the opcode and next 8 bit indicates the operand

 . Example MVI A,32H, ADI A,08H

 The length of this instruction is 16 bit that is the opcode is 8 bit and operand is 8 bits. Each

instruction requires two memory location.

Three-byte instruction

 Three instruction is the type of instruction in which the first 8 bit indicates the opcode and next 2

bytes specified the operand which is 16 b it address.

 The low order address is represented in 2nd byte and the higher orders address represented in the 3rd

byte.

 Example-LBA 2050H, JMP 2085H

17

 This instruction would require 3 memory location to store the binary code.

2.2- Addressing Modes in Instructions with Suitable Examples.

 The process of specifying the data to be operated on by the instruction is called addressing.

 The various formats for specifying operands are called addressing modes.

 The 8085 has the following five types of addressing modes.

o Immediate addressing

o Memory direct addressing

o Register direct addressing

o Indirect addressing

o Implicit addressing

Immediate Addressing:

 . In this mode, the operand given in the instruction - a byte or word – transfers to the

destination register or memory location.

 Ex: MVI A, 9AH

 The operand is a part of the instruction.

 The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

 Memory direct addressing moves a byte or word between a memory location and register.

 The memory location address is given in the instruction.

Ex: LDA 850FH

 This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

 Register direct addressing transfer a copy of a byte or word from source register to destination

register.

Ex: MOV B, C

 It copies the content of register C to register B.

Indirect Addressing:

 Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

 Here the data is in the memory location pointed to by the contents of HL pair.

The data is moved to the accumulator.

Implicit Addressing:
 In this addressing mode the data itself specifies the data to be operated upon.

 Ex: CMA

 The instruction complements the content of the accumulator.

 No specific data or operand is mentioned in the instruction.

2.3- Instruction Set Of 8085(Data Transfer, Arithmetic, Logical, Branching,

Stack& I/O, Machine Control

Instruction set of 8085:

18

Instruction sets are instruction codes to perform some tasks. It is classified into five categories.

1-Control Instruction

2-Logical Instruction

3-Branching Instruction

4-Arithmatic Instruction

5- Data transfer Instruction

Control Instruction:

Opcode Operand Meaning Explanation

NOP None
No operation No operation is performed, i.e., the instruction is fetched and

decoded.

HLT None

Halt and enter

wait state

The CPU finishes executing the current instruction and stops

further execution. An interrupt or reset is necessary to exit

from the halt state.

DI None
Disable

interrupts

The interrupt enable flip-flop is reset and all the interrupts

are disabled except TRAP.

EI None
Enable

interrupts

The interrupt enable flip-flop is set and all the interrupts are

enabled.

RIM None
Read interrupt

mask

This instruction is used to read the status of interrupts 7.5,

6.5, 5.5 and read serial data input bit.

SIM None
Set interrupt

mask

This instruction is used to implement the interrupts 7.5, 6.5,

5.5, and serial data output.

Logical Instruction:

Opcode Operand Meaning Explanation

CMP
R

M

Compare the

register or memory

with the

accumulator

The contents of the operand (register or memory) are

M compared with the contents of the accumulator.

CPI 8-bit data

Compare immediate

with the

accumulator

The second byte data is compared with the contents of

the accumulator.

19

ANA
R

M

Logical AND

register or memory

with the

accumulator

The contents of the accumulator are logically AND

with M the contents of the register or memory, and

the result is placed in the accumulator.

ANI 8-bit data

Logical AND

immediate with the

accumulator

The contents of the accumulator are logically AND

with the 8-bit data and the result is placed in the

accumulator.

XRA
R

M

Exclusive OR

register or memory

with the

accumulator

The contents of the accumulator are Exclusive OR

with M the contents of the register or memory, and

the result is placed in the accumulator.

XRI 8-bit data

Exclusive OR

immediate with the

accumulator

The contents of the accumulator are Exclusive OR

with the 8-bit data and the result is placed in the

accumulator.

ORA
R

M

Logical OR register

or memory with the

accumulator

The contents of the accumulator are logically OR with

M the contents of the register or memory, and result is

placed in the accumulator.

ORI 8-bit data

Logical OR

immediate with the

accumulator

The contents of the accumulator are logically OR with

the 8-bit data and the result is placed in the

accumulator.

RLC None
Rotate the

accumulator left

Each binary bit of the accumulator is rotated left by

one position. Bit D7 is placed in the position of D0 as

well as in the Carry flag. CY is modified according to

bit D7.

RRC None
Rotate the

accumulator right

Each binary bit of the accumulator is rotated right by

one position. Bit D0 is placed in the position of D7 as

well as in the Carry flag. CY is modified according to

bit D0.

RAL None

Rotate the

accumulator left

through carry

Each binary bit of the accumulator is rotated left by

one position through the Carry flag. Bit D7 is placed

in the Carry flag, and the Carry flag is placed in the

least significant position D0. CY is modified

according to bit D7.

20

RAR None

Rotate the

accumulator right

through carry

Each binary bit of the accumulator is rotated right by

one position through the Carry flag. Bit D0 is placed

in the Carry flag, and the Carry flag is placed in the

most significant position D7. CY is modified

according to bit D0.

CMA None
Complement

accumulator

The contents of the accumulator are complemented.

No flags are affected.

CMC None
Complement carry The Carry flag is complemented. No other flags are

affected.

STC None Set Carry Set Carry

Branching Instruction:

Opcode Operand Meaning Explanation

JMP
16-bit

address

Jump

unconditionally

The program sequence is

transferred to the memory

address given in the operand.

Opcode Description Flag

Status

JC
Jump on

Carry
CY=1

JNC
Jump on no

Carry
CY=0

JP
Jump on

positive
S=0

JM
Jump on

minus
S=1

JZ
Jump on

zero
Z=1

JNZ
Jump on no

zero
Z=0

16-bit

address

Jump

conditionally

The program sequence is

transferred to the memory

address given in the operand

based on the specified flag of

the PSW.

21

JPE
Jump on

parity even
P=1

JPO
Jump on

parity odd
P=0

Opcode Description Flag

Status

CC
Call on

Carry
CY=1

CNC
Call on no

Carry
CY=0

CP
Call on

positive
S=0

CM
Call on

minus
S=1

CZ Call on zero Z=1

CNZ
Call on no

zero
Z=0

CPE
Call on

parity even
P=1

CPO
Call on

parity odd
P=0

16-bit

address

Unconditional

subroutine call

The program sequence is

transferred to the memory

address given in the operand.

Before transferring, the

address of the next

instruction after CALL is

pushed onto the stack.

RET None

Return from

subroutine

unconditionally

The program sequence is

transferred from the

subroutine to the calling

program.

Opcode Description Flag

Status None

Return from

subroutine

conditionally

The program sequence is

transferred from the

subroutine to the calling

program based on the

specified flag of the PSW

22

RC
Return on

Carry
CY=1

RNC
Return on

no Carry
CY=0

RP
Return on

positive
S=0

RM
Return on

minus
S=1

RZ
Return on

zero
Z=1

RNZ
Return on

no zero
Z=0

RPE
Return on

parity even
P=1

RPO
Return on

parity odd
P=0

and the program execution

begins at the new address.

PCHL None

Load the

program

counter with

HL contents

The contents of registers H

& L are copied into the

program counter. The

contents of H are placed as

the high-order byte and the

contents of L as the low

order byte.

RST 0-7 Restart

The RST instruction is used

as software instructions in a

program to transfer the

program execution to one of

the following eight locations.

Instruction Restart

Address

RST 0 0000H

23

RST 1 0008H

RST 2 0010H

RST 3 0018H

RST 4 0020H

RST 5 0028H

RST 6 0030H

RST 7 0038H

The 8085 has additionally 4

interrupts, which can

generate RST instructions

internally and doesn’t

require any external

hardware. Following are

those instructions and their

Restart addresses −

Interrupt Restart

Address

TRAP 0024H

RST 5.5 002CH

RST 6.5 0034H

RST 7.5 003CH

Arithmetic Instruction:

Opcode Operand Meaning Explanation

ADD
R

M

Add register or

memory, to the

accumulator

The contents of the register or memory are

added to the contents of the accumulator

and the result is stored in the accumulator.

Example − ADD K.

24

ADC
R

M

Add register to the

accumulator with

carry

The contents of the register or memory &

M the Carry flag are added to the contents

of the accumulator and the result is stored

in the accumulator.

Example − ADC K

ADI 8-bit data
Add the immediate to

the accumulator

The 8-bit data is added to the contents of

the accumulator and the result is stored in

the accumulator.

Example − ADI 55K

ACI 8-bit data

Add the immediate to

the accumulator with

carry

The 8-bit data and the Carry flag are added

to the contents of the accumulator and the

result is stored in the accumulator.

Example − ACI 55K

LXI Reg. pair, 16bit data
Load the register pair

immediate

The instruction stores 16-bit data into the

register pair designated in the operand.

Example − LXI K, 3025M

DAD Reg. pair
Add the register pair

to H and L registers

The 16-bit data of the specified register

pair are added to the contents of the HL

register.

Example − DAD K

SUB
R

M

Subtract the register

or the memory from

the accumulator

The contents of the register or the memory

are subtracted from the contents of the

accumulator, and the result is stored in the

accumulator.

Example − SUB K

SBB
R

M

Subtract the source

and borrow from the

accumulator

The contents of the register or the memory

& M the Borrow flag are subtracted from

the contents of the accumulator and the

result is placed in the accumulator.

Example − SBB K

SUI 8-bit data

Subtract the

immediate from the

accumulator

The 8-bit data is subtracted from the

contents of the accumulator & the result is

stored in the accumulator.

Example − SUI 55K

25

XCHG None
Exchange H and L

with D and E

The contents of register H are exchanged

with the contents of register D, and the

contents of register L are exchanged with

the contents of register E.

Example – XCHG

INR
R

M

Increment the

register or the

memory by 1

The contents of the designated register or

the memory are incremented by 1 and their

result is stored at the same place.

Example − INR K

INX R
Increment register

pair by 1

The contents of the designated register pair

are incremented by 1 and their result is

stored at the same place.

Example − INX K

DCR
R

M

Decrement the

register or the

memory by 1

The contents of the designated register or

memory are decremented by 1 and their

result is stored at the same place.

Example − DCR K

DCX R
Decrement the

register pair by 1

The contents of the designated register pair

are decremented by 1 and their result is

stored at the same place.

Example − DCX K

DAA None
Decimal adjust

accumulator

The contents of the accumulator are

changed from a binary value to two 4-bit

BCD digits.

If the value of the low-order 4-bits in the

accumulator is greater than 9 or if AC flag

is set, the instruction adds 6 to the low-

order four bits.

If the value of the high-order 4-bits in the

accumulator is greater than 9 or if the

Carry flag is set, the instruction adds 6 to

the high-order four bits.

Example – DAA

Data transfer Instruction:

26

Opcode Operand Meaning Explanation

MOV

Rd, Sc

M, Sc

Dt, M

Copy from the

source (Sc) to the

destination (Dt)

This instruction copies the contents of the

source register into the destination register

without any alteration.

Example − MOV K, L

MVI
Rd, data

M, data

Move immediate 8-

bit

The 8-bit data is stored in the destination

register or memory.

Example − MVI K, 55L

LDA 16-bit address
Load the

accumulator

The contents of a memory location,

specified by a 16-bit address in the operand,

are copied to the accumulator.

Example − LDA 2034K

LDAX B/D Reg. pair

Load the

accumulator

indirect

The contents of the designated register pair

point to a memory location. This instruction

copies the contents of that memory location

into the accumulator.

Example − LDAX K

LXI Reg. pair, 16-bit data
Load the register

pair immediate

The instruction loads 16-bit data in the

register pair designated in the register or the

memory.

Example − LXI K, 3225L

LHLD 16-bit address
Load H and L

registers direct

The instruction copies the contents of the

memory location pointed out by the address

into register L and copies the contents of

the next memory location into register H.

Example − LHLD 3225K

STA 16-bit address 16-bit address

The contents of the accumulator are copied

into the memory location specified by the

operand.

This is a 3-byte instruction, the second byte

specifies the low-order address and the

third byte specifies the high-order address.

Example − STA 325K

27

STAX 16-bit address

Store the

accumulator

indirect

The contents of the accumulator are copied

into the memory location specified by the

contents of the operand.

Example − STAX K

SHLD 16-bit address
Store H and L

registers direct

The contents of register L are stored in the

memory location specified by the 16-bit

address in the operand and the contents of

H register are stored into the next memory

location by incrementing the operand.

This is a 3-byte instruction, the second byte

specifies the low-order address and the

third byte specifies the high-order address.

Example − SHLD 3225K

XCHG None
Exchange H and L

with D and E

The contents of register H are exchanged

with the contents of register D, and the

contents of register L are exchanged with

the contents of register E.

Example – XCHG

SPHL None

Copy H and L

registers to the

stack pointer

The instruction loads the contents of the H

and L registers into the stack pointer

register. The contents of the H register

provide the high-order address and the

contents of the L register provide the low-

order address.

Example – SPHL

XTHL None
Exchange H and L

with top of stack

The contents of the L register are

exchanged with the stack location pointed

out by the contents of the stack pointer

register.

The contents of the H register are

exchanged with the next stack location

(SP+1).

Example – XTHL

PUSH Reg. pair
Push the register

pair onto the stack

The contents of the register pair designated

in the operand are copied onto the stack in

the following sequence.

28

The stack pointer register is decremented

and the contents of the high order register

(B, D, H, A) are copied into that location.

The stack pointer register is decremented

again and the contents of the low-order

register (C, E, L, flags) are copied to that

location.

Example − PUSH K

POP Reg. pair
Pop off stack to the

register pair

The contents of the memory location

pointed out by the stack pointer register are

copied to the low-order register (C, E, L,

status flags) of the operand.

The stack pointer is incremented by 1 and

the contents of that memory location are

copied to the high-order register (B, D, H,

A) of the operand.

The stack pointer register is again

incremented by 1.

Example – POPK

OUT 8-bit port address

Output the data

from the

accumulator to a

port with 8bit

address

The contents of the accumulator are copied

into the I/O port specified by the operand.

Example − OUT K9L

IN 8-bit port address

Input data to

accumulator from a

port with 8-bit

address

The contents of the input port designated in

the operand are read and loaded into the

accumulator.

Example − IN5KL

2.4-Simple Assembly Language Programming Of 8085- Simple Addition &

Subtraction. Logic Operations (AND, OR, Complement 1’s & 2’s) &

Masking Of Bits. Counters & Time Delay (Single Register, Register Pair,

More Than Two Register). Looping, Counting & Indexing (Call/JMP Etc.).

Stack & Subroutines Programs. Code Conversion, BCD Arithmetic & 16 Bit

Data Operation, Block Transfer. Compare Between Two Numbers. Array

Handling (Largest Number & Smallest Number In The Array).

Assembly language program:

29

Write 8085 Assembly language program to perform 8-bit addition without carry. The numbers are

stored at F100, and F101. Result will be stored at F102.

Input

Address Data

… …

F100 CE

F101 21

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 01, F1 LXI H,F100H Point to get the numbers

F003 7E MOV A,M Load first number to A

F004 23 INX H Point to next operand

F005 86 ADD M Add M with A

F006 23 INX H Point to next location

F007 77 MOV M,A Store result

F008 76 HLT Terminate the program

 Output

Address Data

… …

F102 EF

Write 8085 Assembly language program to subtract two 8-bit numbers and store the

result at locations 8050H and 8051H.

Input

first input

30

Address Data

.

.

.

.

.

.

8000 78

8001 5D

.

.

.

.

.

.

second input

Address Data

.

.

.

.

.

.

8000 23

8001 CF

Program

Address HEX

Codes

Labels Mnemonics Comments

F000 0E,00

MVIC,00H Clear C register

F002 21,00, 80

LXIH,8000H Load initial address to get operand

F005 7E

MOVA, M Load Acc with the memory element

F006 23

INX H Point to next location

F007 46

MOVB, M Load B with the second operand

31

Address HEX

Codes

Labels Mnemonics Comments

F008 90

SUB B Subtract B from A

F009 D2,0D, F0

JNC STORE When CY = 0, go to STORE

F00C 0C

INR C Increase C by 1

F00D 21,50, 80 STORE LXIH,8050H Load the destination address

F010 77

MOVM, A Store the result

F011 23

INX H Point to next location

F012 71

MOVM, C Store the borrow

F013 76

HLT Terminate the program

Output

first output

Address Data

.

.

.

.

.

.

8050 1B

8051 00

.

.

.

.

.

.

second output

32

Address Data

.

.

.

.

.

.

8050 54

8051 01

Write 8085 Assembly language program to multiply two 8-bit numbers stored in

memory location and store the 16-bit results into the memory.

Input

Address Data

.

.

.

.

.

.

8000 DC

8001 AC

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 00, 80

LXI H,8000H Load first operand address

F003 46

MOV B, M Store first operand to B

F004 23

INX H Increase HL pair

F005 AF

XRA A Clear accumulator

F006 4F

MOV C, A Store 00H at register C

33

Address HEX Codes Labels Mnemonics Comments

F007 86 LOOP ADD M Add memory element with Acc

F008 D2, 0C, F0

JNC SKIP When Carry flag is 0, skip next task

F00B 0C

INR C Increase C when carry is 1

F00C 05 SKIP DCR B Decrease B register

F00D C2, 07, F0

JNZ LOOP Jump to loop when Z flag is not 1

F010 21, 50, 80

LXI H,8050H Load Destination address

F013 71

MOV M, C Store C register content into memory

F014 23

INX H Increase HL Pair

F015 77

MOV M, A Store Acc content to memory

F016 76

HLT Terminate the program

Output

Address Data

.

.

.

.

.

.

8050 93

8051 D0

Program for 1's complement and 2's complement of an 8-bit number. Using 8085

instruction

34

Input

Address Data

.

.

.

.

.

.

8000 AB

.

.

.

.

.

.

Program

Address HEX Codes Mnemonics Comments

F000 3A, 00, 80 LDA 8000H Load the number from memory

F003 2F CMA Complement the accumulator

F004 32, 50, 80 STA 8050H Store the 1's complemented result

F007 3C INR A Increase A by 1

F008 32, 51, 80 STA 8051H Store the 2's complemented result

F00B 76 HLT Terminate the program

Output

Address Data

.

.

.

.

.

.

35

Address Data

8050 54

8051 55

.

.

.

.

.

Write an assembly language program in 8085 microprocessors to perform AND

operation between lower and higher order nibble of 8-bit number.
...

Program –

MEMORY ADDRESS MNEMONICS COMMENT

200E RLC Rotate accumulator left by one bit without carry

200F ANA B A <- A (AND) B

2010 STA 3050 M[3050] <- A

2013 HLT END

Counters & Time delay (Single Register, Register Pair, more than Two Register)

Counters-

 A loop counter is set up by loading a register with a certain value

 Then using the DCR (to decrement) and INR (to increment) the contents of the register are updated.

 A loop is set up with a conditional jump instruction that loops back or not depending on whether the

count has reached the termination count.

 Simple ALP for implementing a loop Using DCR instruction

 MVI C, 15H

 LOOP DCR C

 JNZ LOOP

Using a Register Pair as a Loop Counter-

 Using a single register, one can repeat a loop for a maximum count of 255 times.
 It is possible to increase this count by using a register pair for the loop counter instead of the single

register. A minor problem arises in how to test for the final count since DCX and INX do not modify

the flags.

 However, if the loop is looking for when the count becomes zero, we can use a small trick by ORing

the two registers in the pair and then checking the zero flag.

The following program is an example of a loop set up with a register pair as the loop counter.

36

 LXI B, 1000H

 LOOP DCX B

 MOV A, C

 ORA B

 JNZ LOOP

Time Delays

 Each instruction passes through different combinations of Fetch, Memory Read, and Memory Write

cycles.

 Knowing the combinations of cycles, one can calculate how long such an instruction would require

to complete.

 B for Number of Bytes

 M for Number of Machine Cycles

 T for Number of T-State.

Delay loops

 • We can use a loop to produce a certain amount of time delay in a program.

• The following is an example of a delay loop:

 MVI C, FFH 7 T-States

 LOOP DCR C 4 T-States

 JNZ LOOP 10 T-States

 The first instruction initializes the loop counter and is executed only once requiring only 7 T States.

 The following two instructions form a loop that requires 14 T-States to execute and is repeated 255

times until C becomes 0.

The following is an example of a delay loop set up with a register pair as the loop counter.

 LXI B, 1000H 10 T-States

 LOOP DCX B 6 T-States

 MOV A, C 4 T-States

 ORA B 4 T-States

 JNZ LOOP 10 T-States

Looping, Counting & Indexing (Call/JMP etc.)

Looping:

It is used to instruct the microprocessor unit to repeat tasks. A loop is set up by instructing MPU to change

sequence of execution and perform the task given.This is accomplished by Jump Instructions.

Loops are of 2 types:

37

 Continuous (repeats a task continuously)

 Conditional (repeats a task until certain data conditions are met)

Indexing:

It means counting or referencing objects with sequential numbers. Data bytes are stored in memory location,

and those data bytes are referred to by their memory location.

Counting:

This programming technique uses INR or DCR instructions. A loop is established to update count and each

count is checked to determine whether it has reached final number and if not reached, then the loop is

repeated.
Stack & Subroutines programs.

 The stack is a reserved area of the memory in RAM where we can store temporary information. The

stack is a shared resource as it can be shared by the microprocessor and the programmer.

 The programmer can use the stack to store data. And the microprocessor uses the stack to execute

subroutines.

 The 8085 has a 16-bit register known as the ‘Stack Pointer.’

 The programmer can decide the starting address of the stack by loading the address into the stack

pointer register at the beginning of a program.

 The stack works on the principle of First In Last Out.

Subroutine is assembly language

 A subroutine is a small program written separately from the main program to perform a particular

task that you may repeatedly require in the main program.

 Essentially, the concept of a subroutine is that it is used to avoid the repetition of smaller programs.

 Subroutines are written separately and are stored in a memory location that is different from the main

program.

 You can call a subroutine multiple times from the main program using a simple CALL instruction.

The conditional CALL statements in assembly language program.

We can use conditional CALL statements, too, according to our needs. These statements enter a subroutine

only when a certain condition is met.

CC Call at address if cy (carry flag) = 1

CNC Call at address if cy (carry flag) = 0

CZ Call at address if ZF (zero flag) = 1

CNZ Call at address if ZF (zero flag) = 0

CPE Call at address if PF (parity flag) = 1

CPO Call at address if PF (parity flag) = 0

CN Call at address if SF (signed flag) = 1

CP Call at address if SF (signed flag) = 0

Advantages of using subroutines

https://technobyte.org/microprocessors-course-engineering-learn-from-scratch/

38

 Subroutines avoid the repetition of instructions.

 They give an aspect of modular programming to the entire program.

 Improves efficiency by reducing the size of the memory needed to store the program.

Code conversion, BCD Arithmetic & 16 Bit data Operation, Block Transfer.

To write an assembly language program to convert an 8 bit binary data to BCD using 8085

microprocessor kit.

Memory

Location

Hex Code Label Mnemonics Comments

Op code Operand

4100 0E,00 MVI E,00 Clear „E‟ register
(Hund)

4102 53 MOV D,E Clear „D‟ register
(tens)

4103 3A,00,42 LDA 4200 Get the data in „A‟

4106 C3,06,41 HUND CPI 64 Compare the data with
64

4108 DA,11,41 JC TEN If content is less jump
to ten

410B D6, 64 SUI 64 Subtract data by 64

410D IC INR E Increment carry each
time

410E C3,06,41 JMP HUND Jump to hundred &
repeat

4111 C3, 0A TEN CPI 0A Compare the data with
0A

4113 DA,1C,41 JC UNIT If data is less jump to
unit

4116 D6, 0A SUI 0A Subtract the data by 0A

4118 14 INR D Increment „D‟ each
time

4119 C3,11,41 JMP TEN Jump to ten & repeat

411C 4F UNIT MOV 4A Move the value „A‟ to
„C‟

411D 7A MOV A,D Move the value „D‟ to
„A‟

411E 07 RLC Rotate the value of „A‟

411F 07 RLC Of „A‟ so that

4120 07 RLC Lower and upper
niddle

4121 07 RLC Gets exchanged

4122 81 ADD C Add „A‟ and „C‟

4123 32,50,42 STA 42,50 Save ten‟ & units in
„M‟

4126 7B MOV A,E Move to E to A

4127 32,51,42 STA 4251 Save hundreds unit in
„A‟

412A 76 HLT Stop the program
execution

Input

39

Input Address Value

4200 54

Output

Output Address Value

4250 84

4251 00

Result:
Thus the binary to BCD conversion was executed successfully

To write an assembly language program to convert BCD data to Binary data using 8085

microprocessor kit.

Memory Hex Code Label Mnemonics Comments

Location Op code Operand

4100 3A,00,42 LDA 4200 Get the data in „A‟

4103 5E MOV E,A Save in „E‟ register

4104 E6, F0 ANI F0 Mark the lower nibble

4106 07 RLC Rotate the upper

4107 07 RLC To lower nibble

4108 07 RLC And save in

4109 07 RLC Register B

410A 47 MOV B,A Move it from „A‟ to

„B‟

410B AF XRA A Clear the accumulator

410C 0E,0A MVI C,0A Intialise „C‟ as „0A‟

410E 08 REP

410F 0D DCR C Decrement „C‟ register

4110 C2,0E,41 JNZ Jump till value „C‟ is 0

4113 47 MOV B,A Move the value A to B

4114 7B MOV A,E Get the BCD in „A‟

4115 E6, 0F ANI 0F Mark the upper nibble

4117 80 ADD B Add „A‟ and „B‟

4118 32,01,42 STA 4201 Save the binary data

411B 76 HLT Stop the program

Execution

Input

 Input Address Value

4200 68

Output

 Output Address Value

4201 44

40

16

68

 4-4

Result:
Thus the BCD to binary conversion was executed successfully

Program for Move a block of 16 data stored from 8050H to 805FH to a target location from 8070F to

807FH.

Address Hex

Codes

Label Mnemonic T-States Comment

8000
21

50

80

START: LXI H,

8050H

10 Setup HL pair as a pointer for

source memory.

8003
11

70

80

LXI D,

8070H

10 Set up DE pair as a pointer for

destination memory

8006
06

10

MVI B, 10H 7 Set up B to count 16 bytes

8008 7E LOOP: MOV A, M 7 Get data byte from source.

8009 12

STAX D 7 Store data byte as destination

800A 23

INX H 6 Point HL to next source location

800B 13

INX D 6 Point DE to next destination

800C 05

DCR B 4 Decrement count

800D
C2

08

80

JNZ LOOP 10 If counter is not 0, go back to

transfer next byte.

8010 76

HLT 5 Stop

41

Total 17

Bytes

Total 69 T-

States

The Main program is started from location 8000H – 8010H.

Source Data Block from 8050H – 805FH.

Destination block from 8070H – 807FH

Input Output

Address Value Address Value

8050H 00 8070H 00

8051H 11 8071H 11

8052H 22 8072H 22

8053H 33 8073H 33

8054H 44 8074H 44

8055H 55 8075H 55

8056H 66 8076H 66

8057H 77 8077H 77

8058H 88 8078H 88

8059H 99 8079H 99

805AH AA 807AH AA

805BH BB 807BH BB

805CH CC 807CH CC

42

805DH DD 807DH DD

805EH EE 807EH EE

805FH FF 807FH FF

Write 8085 Assembly language program to find the largest number from a block of bytes.

Input-

Address Data

... ...

8000 06

8001 55

8002 22

8003 44

8004 11

8005 33

8006 66

... ...

Program

Address HEX

Codes

Labels Mnemonics Comments

F000 21, 00, 80

LXI

H,8000H

Point to getarray size

F003 4E

MOV C, M Get the size of array

43

Address HEX

Codes

Labels Mnemonics Comments

F004 23

INX H Point to actual array

F005 46

MOV B, M Load the first number into B

F006 0D

DCR C Decrease C

F007 23 LOOP INX H Point to next location

F008 7E

MOV A, M Get the next number from memory to Acc

F009 B8

CMP B Compare Acc and B

F00A DA, 0E,

F0

JC SKIP if B > A,then skip

F00D 47

MOV B, A If CY is 0, update B

F00E 0D SKIP DCR C Decrease C

F00F C2, 07, F0

JNZ LOOP When count is not 0, go to LOOP

F012 21, 00, 90

LXI

H,9000H

Point to destination address

F015 70

MOV M, B Store the minimum number

F016 76

HLT Terminate the program

Output

Address Data

... ...

9000 66

... ...

44

Program to Find the smallest number in an array of data in 8085 Microprocessor

Input

Address Data

... ...

8000 06

8001 55

8002 22

8003 44

8004 11

8005 33

8006 66

... ...

Program

Address HEX

Codes

Labels Mnemonics Comments

F000 21, 00, 80

LXI

H,8000H

Point to get array size

F003 4E

MOV C, M Get the size of array

F004 23

INX H Point to actual array

F005 46

MOV B, M Load the first number into B

45

Address HEX

Codes

Labels Mnemonics Comments

F006 0D

DCR C Decrease C

F007 23 LOOP INX H Point to next location

F008 7E

MOV A, M Get the next number from memory to Acc

F009 B8

CMP B Compare Acc and B

F00A D2, 0E, F0

JNC SKIP if B <= A,then skip

F00D 47

MOV B, A If CY is 1, update B

F00E 0D SKIP DCR C Decrease C

F00F C2, 07, F0

JNZ LOOP When count is not 0, go to LOOP

F012 21, 00, 90

LXI

H,9000H

Point to destination address

F015 70

MOV M, B Store the minimum number

F016 76

HLT Terminate the program

Output

Address Data

... ...

9000 11

... .

46

8085 program to find smallest number between two numbers or compare between two Number

Input

First input

Address Data

.

.

.

.

.

.

8000 FD

8001 23

.

.

.

.

.

.

Second input

Address Data

.

.

.

.

.

.

8000 59

8001 75

.

.

.

.

.

.

47

Program

Address HEX

Codes

Label Mnemonics Comments

F000 21, 00, 80

LXI

H,8000H

Point to the first number

F003 46

MOV B,M Load the first number to B

F004 23

INX H Point to next location

F005 7E

MOV A,M Get the second number to A

F006 B8

CMP B Compare B with A

F007 DA, 0B,

F0

JC STORE Is CY = 1,jump to Store

F00A 78

MOV A,B Load A with second number

F00B 32, 50, 80 STORE STA 8050H Store the number into memory

F00E 76

HLT Terminate the program

Output

First output

Address Data

.

.

.

.

.

.

8050 23

48

Address Data

.

.

.

.

.

.

Second output

Address Data

.

.

.

.

.

.

8050 59

.

.

.

.

.

.

2.5-Memory & I/O Addressing

 It is possible to address an I/O port as if it were a memory location. For example, let us say, the chip

select pin of an I/O port chip is activated when address = FFF0H, IO/M* = 0, and RD* = 0.

 In the I/O port chip is selected when the 8085 is thinking that it is addressing memory location

FFF0H for a read operation.

 Note that 8085 thinks that it is addressing a memory location because it has sent out IO/M* as a logic

0. But in reality, an input port has been selected, and the input port supplies information to the 8085.

 Such I/O ports that are addressed by the processor as if they were memory locations are called

memory-mapped I/O ports.

49

 In the memory location we address an Input Output port. An example to be cited as when address =

FFF0H, IO/M* = 0, and RD* = 0.

 Here we select the Input Output port chip when 8085 microprocessor finds that it is memory

allocated location as it is sent out like IO/M* as a logic 0.

 In real world we select an Input Port which supplies information to 8085 Microprocessor. Like the

memory locations 8085 microprocessor gets addressed by the processor which are called memory-

mapped Input Output ports.

There is a set of instructions for this memory-mapped I/O operations. E.g. STA, LDA etc.

Mnemonics, Operand Opcode (in HEX) Bytes

STA Address 32 3

 Let us consider STA 4050H as an example instruction of this type. It is a 3-Byte instruction.

 The first Byte will contain the opcode hex value 32H. As in 8085 assembly language coding

supports low order Byte of the address should be mentioned at first then the high order Byte of the

address should be mentioned next.

 So next Byte in memory will hold 50H and after that 40H will be kept in the last third Byte.

 Let us suppose the initial content of Accumulator is ABH and initial content of memory location

4050H is CDH.

 So after execution, Accumulator content will remain as ABH and 4050H location’s content will

become ABH replacing its previous content CDH.

 The content tracing of this instruction has been shown below −

Before After

(A) ABH ABH

(4050H) CDH ABH

POSSIBLE SHORT TYPE QUESTIONS WITH ANSWER.

50

1-How many types of instruction sets are there.

Ans-According to the length the instruction of 8085 MP is classified into three types.

1-Single byte instruction

2-Two byte instruction

 3-Three byte instruction

Q.2-Define Single byte instruction.

In single byte instruction only Opcode is present,there is no oprand.Example-MOV A,B,ADD B,CMA. The

length of this instruction is 8 bit. Each instruction requires one memory location

Q 3- Define addressing mode of 8085 MP

The way of specifying data to be operated by an instruction is called addressing mode. In immediate

addressing mode the source operand is always data. If the data is 8-bit, then the instruction will be of 2

bytes, if the data is of 16-bit then the instruction will be of 3 bytes.

Q- 4 – How many types of addressing modes are present in 8085 MP

i-Immediate Addressing Mode

 ii-Register Addressing Mode

iii-Direct Addressing Mode

iv-Register Indirect Addressing Mode

 v-implied/Implicit Addressing Mode

Q 5-Define Implicit addressing mode of 8085 MP

In implied/implicit addressing mode the operand is hidden and the data to be operated is available in the

instruction itself.

Examples- MA (finds and stores the 1’s complement of the contains of accumulator A in A) RRC (rotate

accumulator A right by one bit)RLC (rotate accumulator A left by one bit)

Q 6- Define Immediate Addressing Mode

In immediate addressing mode the source operand is always data. If the data is 8-bit, then the instruction

will be of 2 bytes, if the data is of 16-bit then the instruction will be of 3 bytes.

Examples:

MVI B 45 (move the data 45H immediately to register B)

LXI H 3050 (load the H-L pair with the operand 3050H immediately) JMP address (jump to the operand

address immediately)

Q 7- Define STA 16 bit address

In 8085 Instruction set, STA is a mnemonic that stands for Store Accumulator contents in memory. In this

instruction, Accumulator8-bit content will be stored to a memory location whose 16-bit address is indicated

in the instruction as .This instruction occupies 3-Bytes of memory.

Q 8- Define XCHG in 8085 MP. (19-W)

51

In 8085 Instruction set, there is one mnemonic XCHG, which stands for EXCHANGE This is an instruction

to exchange contents of HL register pair with DE register pair. After execution of this instruction, the content

between H and D registers and L and E registers will get swapped respectively.

Q 09- Define branching instruction with example.

Branching instructions refer to the act of switching execution to a different instruction sequence as a result

of executing a branch instruction. The three types of branching instructions are: Jump (unconditional and

conditional) Call (unconditional and conditional) Return (unconditional and conditional)

Example-JC, JNC, JP, JM etc

LONG TYPE QUESTIONS

1-Differenciate between 1 byte ,2-byte ,3-byte instruction with examples.

2-Explain different types of addressing mode in 8085 MP with examples. (19-W) (S-24)

3-Explain RIM and Sim instruction.

4-Write an assembly language programme of addition of two 8 bit no result 16 bit.

5-Write an assembly language programme to find smallest number in an array of data.

6-Write an assembly language programming to find the largest number in a given data array using 8085

instructions. (S-24)

52

Chapter No.- 3:

Timing diagrams
Learning Objectives:

3.1. Define opcode, operand, T-State, Fetch cycle, Machine Cycle, Instruction cycle & discuss

the concept of timing diagram.

3.2. Draw timing diagram for memory read, memory write, I/O read, I/O write machine cycle.

3.3. Draw a neat sketch for the timing diagram for 8085 instruction (MOV, MVI, LDA

instruction).

3.1-Define Opcode, Operand, T-State, Fetch Cycle, Machine Cycle,

Instruction Cycle & Discuss The Concept Of Timing Diagram.
 OPCODE

 Opcode is the first part of an instruction that tells the computer what function to perform and is also

called Operation codes.

 Opcodes are the numeric codes that hold the instructions given to the computer system.

 These are the instructions that describe the CPU what operations are to be performed. The computer

system has an operation code or opcode for each and every function given to it.

OPERAND

 Operand is another second part of instruction, which indicates the computer system where to find the

data or instructions or where to store the data or instructions.

 The number of operands varies amongst different computer systems. Each instruction indicates the

Control Unit of the computer system what to perform and how to perform it.

 The operations are Arithmetic, Logical, Branch operation, so on depending upon the problem that is

provided to the computer.

T-state:
 One time period of frequency of microprocessor is called t-state.

 A t-state is measured from the falling edge of one clock pulse to the falling edge of the next clock

pulse.

 Fetch cycle takes four t-states and execution cycle takes three t-states

Fetch cycle:
 The first byte of an instruction is its op-code.

 An instruction may be more than one byte long.

 The other bytes are data or operand address.

 The program counter (PC) keeps the memory address of the next instruction to be executed.

 In the beginning of a fetch cycle the content of the program counter, which is the address of the

memory location where op-code is available, is sent to the memory.

 ·The memory places the op-code on the data bus so as to transfer it to the microprocessor.

 The entire operation of fetching an op-code takes three clock cycles.

Machine Cycle:
 Machine cycle is defined as the time required for completing the operation of accessing either memory

or I/O device.

 In the 8085, the machine cycle may consist of three to six T states.

 The T-state is defined as one sub-division of the operation performed in one clock period.

 ·In every machine cycle the first operation is op-code fetch and the remaining will be read or write

from memory or IO devices.

Instruction Cycle:

53

 ·An instruction is a command given to the microprocessor to perform a specific operation on the given

data.

 ·Sequence of instructions written for a processor to perform a particular task is called a program.

 The microprocessor fetches one instruction from the memory at a time & executes it. It executes all

the instructions of the program one by one to produce the final result.

 In other words, an instruction cycle is defined as the time required completing the execution of an

instruction.

 An instruction cycle consists of a fetch cycle and an execute cycle.

 The time required to fetch an opcode (fetch cycle) is a fixed slot of time while the time required to

execute an instruction (execute cycle) is variable which depends on the type of instruction to be

executed.

Instruction cycle (IC) = Fetch cycle (FC) Execute cycle (EC)

Timing diagram of various signals

Address latch enable:

 Address latch enable is an active high signal. (i.e.) the latch becomes enabled when the signal is high.

 It is activated during the beginning of T1 state of each machine cycle and it remains active in the

T1state. But in case of bus idle machine cycle it is not activated.

Data Bus (D0-D7):

 Two types of data flow are possible. The data can be transferred from memory to microprocessor and

vice versa.

 This process occurs during the T2 and T3 states.

 There are 2 cycles. One is Read machine cycle and the other is write machine cycle. In read machine

cycle, the data will appear during the later part of T2 state, while in Write machine cycle the data will

appear on the beginning of T2 state.

Lower byte address (A0-A7):
 The lower byte of address is available on the time multiplexed address/date bus during the T1 state of

machine cycle, except the bus idle machine cycle.

Higher byte addresses (A8-A15):

 The higher byte addresses (A8-A15) is available for T1, T2 and T3 states of each machine cycle,

except the bus idle machine cycle.

IO/M’, S0, S1:

 From the previous discussions about 8085 microprocessors, we very well know that IO/M’, S0, S1 are

the status signals of the microprocessor.

 These status signals decide the type of machine cycle is to be executed.

 So they remain activated from the beginning T1 state of a particular machine cycle and remains till the

end of that machine cycle.

RD’ and WR’:

 These 2 signals RD’ and WR’ decides the direction of the data transfer.

 RD’ is Active: When RD’ goes active, the data is transmitted from memory, I/O device or any other

peripherals to the microprocessor.

54

 WR’ is active: When WR’ goes active, the data is transmitted from microprocessor to the memory or

any other peripheral devices.

 In 8085 microprocessors either RD’ goes high or WR’ goes high. Both cannot take place at same time.

 The data transfer both RD’ and WR’ takes place during T2 and T3 states of machine cycle. So these

signals are activated during the T2 and T3 states.

3.2-Draw Timing Diagram For Memory Read, Memory Write, I/O Read, I/O

Write Machine Cycle.
Various operation of 8085 MP
To execute a program, 8085 performs various operations as:

 Opcode fetch

 Operand fetch

 Memory read/write

 I/O read/write

Opcode Fetch Machine Cycle:
 It is the first step in the execution of any instruction.

 The following points explain the various operations that take place and the signals that are changed

during the execution of opcode fetch machine cycle:

T1 clock cycle

 The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit address and

A8 – A15 contains higher bit address.

 IO/M signal is low indicating that a memory location is being accessed. S1 and S0 also changed

to the levels.

 ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.

T2 clock cycle

 Multiplexed address bus is now change to Data bus.

 The RD signal is made low by the processor. This signal makes the memory device load the data bus

with the contents of the location addressed by the processor.

T3 clock cycle

 The opcode available on the data bus is read by the processor and moved to the instruction register.

 The RD signal is deactivated by making it logic 1.

T4 clock cycle

 The processor decode the instruction in the instruction register and generate the necessary control

signals to execute the instruction.

 Based on the instruction further operations such as fetching, writing into memory etc takes place.

55

Memory Read Machine Cycle of 8085:

 Single byte instructions require only Opcode Fetch machine cycles. But, 2-byte and 3-byte instructions

require additional machine cycles to read the operands from memory.

 The additional machine cycle is called Memory Read machine cycle.

 For example, the instruction MVI A, 50H requires one OF machine cycle to fetch the operand from

memory and one MR machine cycle to read the operand (50H) from memory.

 The MR machine cycle takes 3 T-states.

Memory Write Machine cycle:

56

 The memory write cycle is executed by the processor to write a data byte in a memory location.

 The processor takes three T-states and WR signal is made low.

 The timing diagram of this cycle is given in Fig.

I/O Read Cycle:
 The I/O read cycle is executed by the processor to read a data byte from I/O port or from peripheral,

which is I/O mapped in the system.

 The 8-bit port address is placed both in the lower and higher order address bus.

 The processor takes three T-states to execute this machine cycle. The timing diagram of this cycle is

given in Fig.

I/O Write Cycle:
 The I/O write cycle is executed by the processor to write a data byte to I/O port or to a peripheral,

which is I/O mapped in the system.

 The processor takes three T-states to execute this machine cycle.

57

 The timing diagram of this cycle is given in Fig.

3.3-Draw A Neat Sketch For The Timing Diagram For 8085 Instruction

(MOV, MVI, LDA Instruction).
Draw the timing diagram of the given instruction in 8085

MOV B, C

58

 Only opcode fetching is required for this instruction and thus we need 4 T states for the timing

diagram. For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1.

In Opcode fetch (t1-t4 T states):
 00 – lower bit of address where opcode is stored, i.e., 00

 20 – higher bit of address where opcode is stored, i.e., 20.

 ALE – provides signal for multiplexed address and data bus. Only in t1 it used as address bus to fetch

lower bit of address otherwise it will be used as data bus.

 RD (low active) – signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is 0 in t2 & t3

because here the data is read by microprocessor.

 WR (low active) – signal is 1 throughout, no data is written by microprocessor.

 IO/M (low active) – signal is 1 in throughout because the operation is performing on memory.

 S0 and S1 – both are 1 in case of opcode fetching.

Draw the timing diagram of the following code,

MVI B, 45

 Opcode: MVI

 Operand: B is the destination register and 45 is the source data which needs to be transferred to the

register.

 45’ data will be stored in the B register.
 The opcode fetch will be same in all the instructions.

 Only the read instruction of the opcode needs to be added in the successive T states.

 For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1. Also, 4 T states will be required to

fetch the opcode from memory.

 For the opcode read the IO/M (low active) = 0, S1 = 1 and S0 = 0. Also, only 3 T states will be

required to read data from memory.

59

In Opcode fetch (t1-t4 T states):

 00 – lower bit of address where opcode is stored, i.e., 00

 20 – higher bit of address where opcode is stored, i.e., 20.

 ALE – provides signal for multiplexed address and data bus. Only in t1 it used as address bus to fetch

lower bit of address otherwise it will be used as data bus.

 RD (low active) – signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is 0 in t2 & t3

because here the data is read by microprocessor.

 WR (low active) – signal is 1 throughout, no data is written by microprocessor.

 IO/M (low active) – signal is 1 in throughout because the operation is performing on memory.

 S0 and S1 – both are 1 in case of opcode fetching.

Timing diagram of LDA Instruction

 In 8085 Instruction set, LDA is a mnemonic that stands for LoaD Accumulator with the contents from

memory.

 In this instruction Accumulator will get initialized with 8-bit content from the 16-bit memory address

as indicated in the instruction as a16.

 This instruction uses absolute addressing for specifying the data.

 It occupies 3-Bytes in the memory. First Byte specifies the opcode, and the successive 2-Bytes provide

the 16-bit address, i.e. 1-Byte each for each memory location.

Mnemonics, Operand Opcode(in HEX) Bytes

LDA Address 3A 3

 Let us consider LDA 4050H as an example instruction of this type. It is a 3-Byte instruction.

 The initial content of memory address 4050H is ABH. Initially Accumulator content is CDH.

 As after execution A will be initialized with value ABH. Memory location 4050H will still remain with

the content ABH.

Before After

(4050) ABH ABH

60

A CDH ABH

Address Hex Codes Mnemonic Comment

2008 3A LDA 4050H A <- Content of the memory location 4050H

2009 50

Low order Byte of the address

200A 40

High order Byte of the address

Here is the timing diagram of the instruction LDA 4050H

POSIBLE SHORT TYPE QUESTIONS WITH ANSWERS
Q 1-Define Opcode and Operand. (19-W)

Each assembly language statement is split into an opcode and an operand. The opcode is the instruction that

is executed by the CPU and the operand is the data or memory location used to execute that instruction.

Q 2- Define instruction cycle, machine cycle, T-State. Instruction cycle.
The time a microprocessor needs to fetch and execute one entire instruction is known as an instruction cycle.

There are typically four stages of an instruction cycle that the CPU carries out-

Machine cycle:

The basic microprocessor operation such as reading a byte from I/O port or writing a byte to memory is called

as machine cycle.

The time TCY in the above figure is called as the machine cycle. Thus a machine cycle consists of several T-

states.

T-state:

One complete cycle of clock is called as T-state as shown in the above figure. The time intervals T1T1

orT2T2 are the examples of T-state.

A T-state is measured from the falling edge of one clock pulse to the falling edge of the next clock pulse.

Various versions of 8086 have maximum clock frequency from 5MHz to 10MHz. Hence the minimum time

for one T- state is between 100 to 200 n sec.

61

Q 3- In timing diagram how many, machine cycles are present in 8085 MP.
 1-Opcode fetch machine cycle

2-Memery read machine cycle

3-Memory write machine cycle

4-I/o read machine cycle

5-I/O write machine cycle

Q4- Write number of machine cycle and addressing mode for the given instruction of 8085

microprocessor MVI B, 10H. (S-24)

Ans: -The "MVI B, 10H" instruction requires 2 machine cycles that is

 Opcode fetch and Memory read machine cycle.

 Immediate addressing mode is used.

POSSIBLE LONG TYPE QUESTIONS
1-Draw the timing diagram of the instruction LDAX B.

2-Draw the taming diagram of Opcode fetch machine cycle.

3-Draw and explain the timing diagram of the instruction IN 82H.

4-Draw a timing diagram of LXI D,2500H with a neat sketch.

62

Chapter No.: 4

Microprocessor Based System Development Aids.

Learning Objectives-

4.1-Concept of interfacing

4.2-Define Mapping &Data transfer mechanisms - Memory mapping & I/O Mapping.

4.3- Concept of Memory Interfacing: - Interfacing EPROM & RAM Memories

4.4- Concept of Address decoding for I/O devices

4.5- Programmable Peripheral Interface: 8255.

4.6- ADC & DAC with Interfacing.

4.7- Interfacing Seven Segment Displays

4.8- Generate square waves on all lines of 8255

4.9- Design Interface a traffic light control system using 8255.

4.10- Design interface for stepper motor control using 8255.

4.11- Basic concept of other Interfacing DMA controller, USART

4.1-Concept Of Interfacing

Interface-

 Interface is the path for communication between two components.

 Interfacing is of two types, memory interfacing and I/O interfacing.

Memory Interfacing
 When we are executing any instruction, we need the microprocessor to access the memory for reading

instruction codes and the data stored in the memory.

 For this, both the memory and the microprocessor requires some signals to read from and write to

registers.

 The interfacing circuit therefore should be designed in such a way that it matches the memory signal

requirements with the signals of the microprocessor.

 IO Interfacing
 There are various communication devices like the keyboard, mouse, printer, etc.

 So, we need to interface the keyboard and other devices with the microprocessor by using latches and

buffers. This type of interfacing is known as I/O interfacing.

Block Diagram of Memory and I/O Interfacing

63

4.2-Define Mapping &Data Transfer Mechanisms - Memory Mapping & I/O
Mapping.

Mapping.
 The memory mapping is used to transfer the logical address space into physical memory but sometimes

physical memory is a smaller size.

 The microprocessor can access external memory. The memory mapping used for increased access to

physical memory.

Memory mapping
 In memory mapping of I/O devices, the I/O ports are assigned 16-bit address within the memory.

 Here each bus is common thus the same set of instructions is used for memory and I/O devices.

 Thus, I/O is considered as memory and the same address space is used by both memory and I/O

devices.

 This reduces the addressing capability of the memory.

 In this case, the processor considers the I/O ports as memory locations for the purpose of reading and

writing.

I/O Mapping.
 It is also known as Isolated I/O mapping and the reason for the same is that here the address space of

memory and I/O are separated from each other.

 Thus, different read and write instructions are used for I/O and memory and there is a common bus for

I/O devices and memory however, individual read and write control lines are used for I/O.

 Here the operation takes place in a way that, if the data over which operation is to be performed is to be

collected from the I/O devices then address is placed on the address line and I/O read and I/O write

control lines will get activated so that data transfer can be performed between the processor and I/O.

 For the transfer of data between the processor and I/O devices, only IN and OUT instructions are used

in the isolated mapping. The required chip select signals in this case are generated by an individual

decoding unit.

4.3- Concept Of Memory Interfacing:- Interfacing Eprom & Ram Memories

Concept of Memory Interfacing
For Memory Interfacing in 8085

1. Microprocessor 8085 can access 64Kbytes memory since address bus is 16-bit. But it is not always

necessary to use full 64Kbytes address space. The total memory size depends upon the application.

2. Generally, EPROM (or EPROMs) is used as a program memory and RAM (or RAMs) as a data

memory. When both, EPROM and RAM are used, the total address space 64Kbytes is shared by them.

3. The capacity of program memory and data memory depends on the application.

4. It is not always necessary to select 1 EPROM and 1 RAM. We can have multiple EPROMs and

multiple RAMs as per the requirement of application.

5. We can place EPROM/RAM anywhere in full 64 Kbytes address space. But program memory

(EPROM) should be located from address 0000H since reset address of 8085 microprocessor is 0000H.

Memory Interfacing: -
 Interfacing is a technique to be used for connecting the Microprocessor to Memory.

 Now a days Semiconductor memories are used for storing purpose.

 There are some of the advantages of the semiconductor memory.

Small size

High speed

64

Better reliability

Low cost

 Generally, RAM or ROM is used for memory interfacing.

Memory: -
 A memory is a digital IC which stores the data in binary form.

Memory Size: -
 The number of location and number of bits per word will vary from memory to memory.

 For example, if a particular memory chip is capable of storing M words with each word having N-bits.

Then the size of the memory will be M× N.

Interfacing a ROM memory of 4096*8 with 8085 Microprocessor: -
 Given memory size = 4096 * 8

4096 =2^12.

So 12 lines will be used for interfacing. A0 to A11

 In this system A0 to A11 lines of Microprocessor will be connected to the address lines of the memory.

And D0 to D7 of the 8085 microprocessor will be connected to the data bus of the memory.

 As we know that the it is EPROM, so only RD pin is connected to the microprocessor. There is not the

facility for writing data.

 In case if you are using RAM then you have to connect one more pin for writing operation.

 As we see that there is a pin named CS. Generally this pin is used for Selection for the chip in case of

two or more than memory chip.

 Latch has been used to separate the data and address bus.
 Now come to the main part when the 8085 wants to read from and write into memory, it activates

IO/M, RD and WR signals as shown in Table.

 Table shows the status of IO/M, RD and WR signals during memory read and write operations.

4.4- Concept Of Address Decoding For I/O Devices
Address Decoding

http://www.electronicsengineering.nbcafe.in/wp-content/uploads/2018/01/table_interfacing.jpg

65

 Microprocessor system includes memory devices and I/O devices.

 It is important to note that microprocessor can communicate (read/write) with only one

device at a time, since the data, address and control buses are common for all the

devices.

 In order to communicate with memory or I/O devices, it is necessary to decode the

address from the microprocessor.

 Due to this each device (memory or I/O) can be accessed independently.

 The following section describes common address decoding techniques.

Address Decoding Techniques:

Address decoding technique are two types:
1. Absolute decoding/Full Decoding

2. Linear decoding/Partial Decoding

Absolute decoding:

 In absolute decoding technique, all the higher address lines are decoded to select the

memory chip, and the memory chip is selected only for the specified logic levels on

these high-order address lines; no other logic levels can select the chip.

 This addressing technique is normally used in large memory systems.

Linear decoding:
 In small systems, hardware for the decoding logic can be eliminated by using individual high-order

address lines to select memory chips.

 This is referred to as linear decoding. Figure shows the addressing of RAM with linear decoding

technique.

https://www.eeeguide.com/wp-content/uploads/2018/07/Memory-Interfacing-in-8085-1.jpg

66

 This technique is also called partial decoding. It reduces the cost of decoding circuit.

4.5-Programmable Peripheral Interface: 8255.
 PPI 8255 is a general purpose programmable I/O device designed to interface the CPU with its outside

world such as ADC, DAC, keyboard etc.

 It consists of three 8-bit bidirectional I/O ports i.e. PORT A, PORT B and PORT C. We can assign

different ports as input or output functions.

Block diagram –

 It consists of 40 pins and operates in +5V regulated power supply.

 Port C is further divided into two 4-bit ports i.e. port C lower and port C upper

 Port C can work in either BSR (bit set rest) mode or in mode 0 of input-output mode of 8255.

 Port B can work in either mode 0 or in mode 1 of input-output mode.

https://www.eeeguide.com/wp-content/uploads/2018/07/Memory-Interfacing-in-8085-2.jpg

67

 Port A can work either in mode 0, mode 1 or mode 2 of input-output mode.

 It has two control groups, control group A and control group B.

 Control group A consist of port A and port C upper.

 Control group B consists of port C lower and port B.

Depending upon the value if CS’, A1 and A0 we can select different ports in different modes as input-output

function or BSR.

This is done by writing a suitable word in control register (control word D0-D7).

CS’ A1 A0 Selection Address

0 0 0 PORT A 80 H

0 0 1 PORT B 81 H

0 1 0 PORT C 82 H

0 1 1 Control Register 83 H

1 X X No Selection X

Pin diagram –

 PA0 – PA7 – Pins of port A

 PB0 – PB7 – Pins of port B

 PC0 – PC7 – Pins of port C

 D0 – D7 – Data pins for the transfer of data

 RESET – Reset input

 RD’ – Read input

 WR’ – Write input

 CS’ – Chip select

 A1 and A0 – Address pins

Operating modes –

68

1-Bit set reset (BSR) mode
If MSB of control word (D7) is 0, PPI works in BSR mode. In this mode only port C bits are used for set or

reset.

2-Input-Output mode

 If MSB of control word (D7) is 1, PPI works in input-output mode.

 This is further divided into three modes

Mode 0 –

 In this mode all the three ports (port A, B, C) can work as simple input function or simple output

function.

 In this mode there is no interrupt handling capacity.

Mode 1 –

 Handshake I/O mode or strobed I/O mode.

 In this mode either port A or port B can work as simple input port or simple output port, and port C

bits are used for handshake signals before actual data transmission.

 It has interrupt handling capacity and input and output are latched.

Example: A CPU wants to transfer data to a printer. In this case since speed of processor is very fast as

compared to relatively slow printer, so before actual data transfer it will send handshake signals to the printer

for synchronization of the speed of the CPU and the peripherals.

69

Mode 2 –

 Bi-directional data bus mode.

 In this mode only port A works, and port B can work either in mode 0 or mode 1.

 6 bits port C are used as handshake signals.

 It also has interrupt handling capacity.

4.6- ADC And DAC With Interfacing
ADC and DAC Interfacing

 The Analog to Digital Conversion is a quantizing process.

 Here the analog signal is represented by equivalent binary states.

 The A/D converters can be classified into two groups based on their conversion techniques.

 In the first technique it compares given analog signal with the initially generated equivalent signal..

 In another technique it determines the changing of analog signals into time or frequency.

 This process includes integrator-converters and voltage-to frequency converters.

 The first process is faster but less accurate, the second one is more accurate.

 As the first process uses flash type, so it is expensive and difficult to design for high accuracy.

 Good features of ADC 0808/0809:

 The conversion speed is much higher

 The accuracy is also high

 It has minimal temperature dependence

 Excellent long term accuracy and repeatability

 Less power consumption

 Interfacing ADC with 8085 Microprocessor

 To interface the ADC with 8085, we need 8255 Programmable Peripheral Interface chip with it.

 The circuit diagram of connecting 8085, 8255 and the ADC converter.

70

 The Port A of 8255 chip is used as the input port.

 The PC7 pin of Port Cupper is connected to the End of Conversion (EOC) Pin of the analog to digital

converter. This port is also used as input port.

 The C lower port is used as output port. The PC2-0 lines are connected to three address pins of this

chip to select input channels.

 The PC3 pin is connected to the Start of Conversion (SOC) pin and ALE pin of ADC 0808/0809

DAC Interfacing with 8085 Microprocessor

DAC 0800 Features-
 To convert the digital signal to analog signal a Digital-to-Analog Converter (DAC) has to be employed.

 The DAC will accept a digital (binary) input and convert to analog voltage or current

 Every DAC will have "n" input lines and an analog output.

 The DAC require a reference analog voltage (V ref) or current (I ref) source.

 The smallest possible analog value that can be represented by the n-bit binary code is called resolution

 The DAC0800 require a positive and a negative supply voltage in the range of ± 5V to ±18V.

 It can be directly interfaced with TTL, CMOS, PMOS and other logic families.

 For TTL input, the threshold pin should be tied to ground (VLC = 0V).

 The reference voltage and the digital input will decide the analog output current, which can be

converted to a voltage by simply connecting a resistor to output terminal or by using an op-amp I to V

converter.

71

 The DAC0800 is available as a 16-pin IC in DIP.

4.7-Interfacing Seven Segment Displays
Seven segment Display

 It is an output device which is very commonly used in the kit of 8085 microprocessors.

 It is the Light Emitting Diode consisting of seven segments.

 We denote the segments as ‘a, b, c, d, e, f, g, and dp’ where dp signifies ‘.’ which is the decimal point.

 A 7-segment display is as shown in the following Figure.

 There are two types of 7-segment LED:

 First is the common anode type and 2nd is the common cathode type.

 In the LED which is common anode and is 7-segmented, here we connect all the eight LED anodes

together and the eight external pin is brought to display. And this pin gets connected to a DC supply of

+5 Volt.

 The cathode ends of the eight segments are brought out on the pins of the display.

 The use of 74373 latch for interfacing a 7-segment display is shown in the following Figure.

72

 In the 74373 latch is used as an I/O mapped I/O port with the port address as FEH.

 This could be easily verified from the chip select circuit used in the figure.

 The following instructions are to be executed to display character ‘3’ on the 7-segment display.

 The corresponding program to send 0DH to the port FEH will be -

MVI A, 0DH

OUT FEH

 Using MVI instruction we are initializing Accumulator (A) with Byte 0DH i.e 0000 1101. Then it will

be sent to the port FEH by the instruction OUT.

4.8-Generate Square Waves On All Lines Of 8255

 The following is the assembly language using DAC to interface with 8255 and generate a square wave

on CRO.

 Here in the code, we use two delay elements one for the rising part of the wave and the other delay

element to reach zero i.e. decrement.

 Certain value chosen is delayed or sustained for a time period to form the square wave. The two loops

used in the program to repeat cycles of a square wave.

Code:
MOV DX,8807 : DX is loaded with control word register address of 8255

MOV AL,80

OUT DX,AL : Contents of AL are transferred to port A of 8255

MOV DX,8801 : DX is loaded with Port A address of 8255

Begin MOV AL,00

OUT DX,AL ; Contents of AL are transferred to port A of 8255

MOV CX,00FF

Delay1 Loop Delay1

MOV AL,FF

OUT DX,AL : Contents of AL are transferred to port A of 8255

MOV CX,00FF : CX is loaded with 00FFH

Delay2 Loop Delay2 : Repeat until CX=0

JMP Begin ; Repeat the same

 Thus we programed in assembly language to interface DAC using 8255 to generate a square waveform

73

4.9-Design Interface A Traffic Light Control System Using 8255.
DESCRIPTION

 Combination of Red, Amber and Green LEDs are provided to indicate Halt, Wait and Go states for

vehicles.

 Combination of Red and Green LEDs are provided for pedestrian crossing. 36 LEDs are arranged in

the form of an intersection.

 At the left corner of each road, a group of 5 LEDs (Red, Amber and Green) are arranged in the form of

a T section to control the traffic of that road.

 Each road is named as North N, South S, East E and West W.

 L1, L10, L19 and L28 (Red) are for stop signal for the vehicles on the road N, S, W and E respectively.

 L2, L11, L20 and L29 (Amber) indicate wait state for the vehicles on the road N, S, E and W

respectively.

 L3, L4 and L5 (Green) are for left, straight and right turn for the vehicles on the road S.

 Similarly L12 - L13 - L14, L23 - L22 - L21 and L32 - L31 - L30 simulates same function for the roads

E, N & W respectively.

 A total of 16 LEDs (2 Red & 2 Green at each road) are provided for pedestrian crossing. L7 - L9, L16

- L18, L25 - L27 & L34 - L36 (Green) when on allows pedestrians to cross and L6 - L8, L15 - L17,

L24 - L26 & L33 - L35 (Red) when on alarms the pedestrians to wait.

ADDRESS LABEL MNEMONICS OPCODE/OPERAND

C000 MVI A,80H 3E 80

C002 OUT CWR D3 DB

C004 REPEAT MVI E,03H 06 03

C006 LXI H,C100H 21 00 C1

C009 NEXTSTAT MOV A,M 7E

C00A OUT PORTA D3 D8

C00C INX H 23

C00D MOV A,M 7E

C00E OUT PORTB D3 D9

C010 INX H 23

C011 MOV A,M 7E

C012 OUT PORTC D3 DA

C014 CALL DELAY CD 1F C0

C017 INX H 23

C018 DCR E 05

C019 JNZ NEXTSTAT C2 09 C0

C01C JMP REPEAT C3 04 C0

74

C01F DELAY LXI D,3000H 11 00 30

C022 L2 MVI C,FFH 0E FF

C024 L1 DCR C 0D

C025 JNZ L1 C2 24 C0

C028 DCX D 1B

C029 MOV A,D 7A

C02A ORA E B3

C02B JNZ L2 C2 22 C0

C02E RET C9

Traffic controller with Four way

4.10-Design Interface For Stepper Motor Control Using 8255
Stepper Motor Interface:

 A stepper motor is a digital motor. It can be driven by digital signal.

 Figure shows the typical 2 phase Stepper Motor Interface using 8255. Motor shown in the circuit has

two phases, with center-tap winding.

 The center taps of these windings are connected to the 12V supply.

 Due to this, motor can be excited by grounding four terminals of the two windings.

 Motor can be rotated in steps by giving proper excitation sequence to these windings.

 The lower nibble of port A of the 8255 is used to generate excitation signals in the proper sequence.

75

 The given excitation sequence rotates the motor in clockwise direction. To rotate motor in

anticlockwise direction we have to excite motor in a reverse sequence.

 The excitation sequence for Stepper Motor Interface many change due to change in winding

connections.

 The excitation sequence given in Table is called full step sequence. In which excitation ends of the

phase are changed in one step.

 The excitation sequence given in table takes two steps to change the excitation ends of the phase. Such

a sequence is called half step sequence and in each step the motor is rotated by 0.9°.

POSSIBLE SHORT TYPE QUESTIONS WITH ANSWERS
1-Define interfacing.
Ans.-In computing, an interface is a shared boundary across which two or more separate components of a

computer system exchange information. The exchange can be between software, computer hardware,

peripheral devices, humans, and combinations of these.

2-Define memory mapping and I/O mapping. (W-23)
Ans.-Memory-mapped I/O (MMIO) and I/O mapped I/O (PMIO) are two complementary methods of

performing input/output (I/O) between the central processing unit (CPU) and peripheral devices in a computer.

An alternative approach is using dedicated I/O processors, commonly known as channels on mainframe

computers, which execute their own instructions.

3-Define EPROM
 EPROM, in full erasable programmable read-only memory, Form of computer memory that does not

lose its content when the power supply is cut off and that can be erased and reused State different

modes of 8255

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Peripheral_device
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Channel_I/O
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Instruction_(computer_science)

76

4-State different modes of 8255. (19-W)

 There are 2 modes in 8255 microprocessor:

Bit set reset (BSR) mode – This mode is used to set or reset the bits of port C only, and selected when the

most significant bit (D7) in the control register is 0. Control Register is as follows:

Input/output mode (I/O) – This mode is selected when the most significant bit (D7) in the control register

is 1.

Mode 0 – Simple or basic I/O mode:

Port A, B and C can work either as input function or as output function. The outputs are latched but the

inputs are not latched. It has interrupt handling capability.

Mode 1 – Handshake or strobed I/O:

In this either port A or B can work and port C bits are used to provide handshaking. The outputs as well as

inputs are latched. It has interrupt handling capability. Before actual data transfer there is transmission of

signal to match speed of CPU and printer.

Q 5-Define ADC
 In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an

analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a

digital signal.

 An ADC may also provide an isolated measurement such as an electronic device that converts an input

analog voltage or current to a digital number representing the magnitude of the voltage or current.

Typically, the digital output is a two's complement binary number that is proportional to the input.
Q6-Why interfacing is required in Microprocessor. (S-24)

 Ans: - Interfacing is required in microprocessors to enable communication between the microprocessor

and external devices.

 It allows the microprocessor to interact with devices like memory, sensors, and input/output (I/O) devices.

 Ttypes of interfacing

 Memory interfacing

 I/O interfacing

POSSIBLE LONG TYPE QUESTIONS

1- Draw the block diagram of 8255.

 2- Generate square wave using 8255.

3- Design Interface a traffic light control system using 8255.
4- Design interface for stepper motor control using 8255.

5-Draw the functional block diagram of 8255 and explain each block. (S-24)

6-Develop a traffic light controller program with a neat block diagram. (S-24)

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Digital_signal_(signal_processing)
https://en.wikipedia.org/wiki/Electronic_device
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Two%27s_complement

77

CHAPTER 5.0

MICROPROCESSOR (ARCHITECTURE AND

PROGRAMMING- 16 BIT-8086)

Learning Objectives:

5.1- Register Organization of 8086.

5.2- Internal architecture of 8086

5.3-Signal Description of 8086

5.4-General Bus Operation& Physical Memory Organization

5.5-Minimum Mode &Timings,

5.6-Maximum Mode &Timings,

5.7-Interrupts and Interrupt Service Routines, Interrupt Cycle, Non-Mask able Interrupt, Mask

able Interrupt

5.8-8086 Instruction Set & Programming: Addressing Modes, Instruction Set, Assembler

Directives and Operators,

5.9-Simple Assembly language programming using 8086 instructions

5.1-Register Organization Of 8086.
General 16-bit registers

 The registers AX, BX, CX, and DX are the general 16-bit registers.

AX Register:

 Accumulator register consists of two 8-bit registers AL and AH, which

can be combined together and used as a 16- bit register AX.

 AL in this case contains the low-order byte of the word, and AH contains the high-order byte.

Accumulator can be used for I/O operations, rotate and string manipulation.

BX Register:
 This register is mainly used as a base register.

 It holds the starting base location of a memory region within a data segment.

 It is used as offset storage for forming physical address in case of certain addressing mode.

CX Register:
 It is used as default counter or count register in case of string and loop instructions.

DX Register:
 Data register can be used as a port number in I/O operations and implicit

operand or destination in case of few instructions.

 In integer 32-bit multiply and divide instruction the DX register contains high-order word of the initial

or resulting number.

Segment registers:
 To complete 1Mbyte memory is divided into 16 logical segments.

 The complete 1Mbyte memory segmentation, Each segment contains 64Kbyte of

memory.

 There are four segment registers.

1-Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions.

 The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP)

register.

 CS register cannot be changed directly.

 The CS register is automatically updated during far jump, far call and far return instructions.

 It is used for addressing a memory location in the code segment of the memory, where the executable

program is stored.

78

2-Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack. By default,

the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP) registers is

located in the stack segment.

 SS register can be changed directly using POP instruction. The stack segment is that segment of

memory, which is used to store stack data.

3-Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default,

the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI,

DI) is located in the data segment.

 DS register can be changed directly using POP and LDS instructions. It points to the data segment

memory where the data is resided.

4-Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with program data. By

default, the processor assumes that the DI register references the ES segment in string manipulation

instructions.

 ES register can be changed directly using POP and LES instructions. It also refers to segment which

essentially is another data segment of the memory. It also contains data.

Pointers and index registers.
The pointers contain within the particular segments. The pointers IP, BP, SP usually contain offsets within the

code, data and stack segments respectively

Stack Pointer (SP) is a 16-bit register pointing to program stack in stack segment.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used for based,

based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect addressing, as

well as a source data addresses in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register indirect

addressing, as well as a destination data address in string manipulation instructions.

Conditional Flags

Conditional flags are as follows:

1-Carry Flag (CY): This flag indicates an overflow condition for unsigned integer arithmetic. It is also used

in multiple-precision arithmetic.

2-Auxiliary Flag (AC): If an operation performed in ALU generates a carry/barrow from lower nibble (i.e. D0

– D3) to upper nibble (i.e. D4 – D7), the AC flag is set i.e. carry given by D3 bit to D4 is AC flag.

3-Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of the result contains

even number of 1’s, the Parity Flag is set and for odd number of 1’s,

the Parity flag is reset.

4-Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is reset.

5-Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If the result of

operation is negative, sign flag is set.

6-Control Flags: Control flags are set or reset deliberately to control the operations of the execution unit.

Control flags are as follows:

7-Trap Flag (TF): It is used for single step control. It allows user to execute one instruction of a program at a

time for debugging. When trap flag is set, program can be run in single step mode.

5.2-Internal Architecture Of 8086
Bus Interface Unit

 The Bus Interface Unit of 8086 microprocessor manages all the data and addresses transfers for the

Execution Unit (EU) like sending address, fetching an instruction, reading data from the memory/ports

as well as writing data to the ports/memory.

 The BIU and EU are connected by an internal bus as shown in the below block diagram .

The BIU of 8086 microprocessor has the following functional parts:

1- Instruction Queue

 The Bus Interface Unit of the 8086 microprocessor contains an instruction queue.

79

 BIU gets up to six bytes of the next instructions and stores them in the instruction queue.

 When the Execution unit executes an instruction and is ready for the next instruction, it simply reads

the instruction from the instruction queue resulting in increased execution speed.

 Pipelining is the process of fetching the next instruction cycle when the current instruction is being

executed.

2. Segment Register

 The BIU of 8086 microprocessor has 4 segment buses i.e. CS, DS, SS & ES. Ts holds the address of

instructions and data in the memory which are used by the processor to access memory locations. It

also contains one pointer register IP.

(i) Code Segment Register (CS)

 The base of the current code segment is contained by the code segment register of the 8086

microprocessor.

 It finds its application in addressing a memory location in the code segment of the memory where the

executable program is stored.

ii) Data Segment Register (DS)

 The data segment contains the starting address of the program’s data segment. It is accessed in the data

segment by an offset address or the content of the other register that holds the offset address.

(iii) Stack Segment Register (SS)

 The stack segment register of the 8086 microprocessor contains the starting address of a program’s

stack segment. The current word in the stack that is addressed is indicated by the segment address plus

an offset value in the stack pointer.

(iv) Extra Segment Register (ES)

 The ES of the 8086 microprocessor is an additional data segment used by some strings to hold extra

data. The string instructions always use the ES and destination index (DI) to determine the 20-bit

physical address.

(v) Instruction Pointer Register (IP)

80

 The Instruction Pointer is a 16-bit register. IP is responsible for holding the distance or offset from this

address to the next instruction byte to be fetched.

Execution Unit (EU)
 The execution unit of the 8086 gives instructions to the bus interface unit stating from where to fetch

the instructions or data from, decode the instructions, and execute those instructions.

 The main function of the EU of the 8086 microprocessor is to control operations on data using an

instruction decoder and ALU. It has no direct connection with the system and performs over data

through BIU.

 The EU includes an arithmetic and logic unit (ALU), a control unit, and a set of registers.

1. ALU
 The arithmetic and logic unit performs all the arithmetic and logical operations like add, subtract, OR,

AND, NOT in the 8086 microprocessor.

2. General-Purpose Registers

 The 8086 microprocessor has 8 registers AH, AL, BH, BL, CH, CL, DH, DL. Individually, these

registers can store 8-bit data, and in pairs, they can store 16-bit data.

 The valid register pairs are AHAL, BHBL, CHCL, DHDL. They can be represented as AX, BX, CX,

and DX.

a. AX Register

 The AX register is called a 16-bit accumulator and AL is called the 8-bit accumulator. For

inputting/outputting data from or to I/O ports, the I/O (IN or OUT) instructions often use AX or AL.

b. BX Register

 The BX register of the 8086 microprocessor is known as the base register. It is used to store the starting

base address of the memory field within the data section.

 It is also used as an index to extend addressing. BX can also be used as a foundation register in

conjunction with DI or SI for special addressing.

c. CX Register

 The contents of the CX register of the 8086 microprocessor are used as a counter in certain instructions

such as SHIFT, ROTATE, and LOOP.

d. DX Register

 The DX register of the 8086 microprocessor is known as the data register. It is used to hold the I/O port

address during the I/O instructions.

3. Stack Pointer Register (SP) and Base Pointer Register (BP)
 Both the SP and BP registers in the 8086 microprocessor are used to access data in the stack segment.

During the execution of instructions, the SP is used as an offset from the current stack section.

 The offset address in the current stack section is stored in the BP. Instructions that use the based

addressing mode make use of this offset.

4. Index Register
 The two index registers SI (source index) and DI (destination index) o the 8086 microprocessor are

used in indexed addressing.

 The instructions that process data strings use the SI and DI index registers, along with DS and ES, to

differentiate between the source and destination address.

5. Flag Register
 The flag register of the 8086 microprocessor is also known as the status register.

 It is a 16-bit register that can be used as a flipflop as its status changes according to the result.

 The control bit in the flag register can be set or reset by the programmer. It has 9 flags and they are

divided into two groups: Conditional flags and Control flags.

5.3-Signal Description Of 8086
8086 Pin Diagram

Here is the pin diagram of 8086 microprocessors –

81

 Power supply and frequency signals

 It uses 5V DC supply at VCC pin 40, and uses ground at VSS pin 1 and 20 for its operation.

Clock signal

 Clock signal is provided through Pin-19. It provides timing to the processor for operations. Its

frequency is different for different versions, i.e. 5MHz, 8MHz and 10MHz.

Address/data bus

 AD0-AD15. These are 16 address/data bus. AD0-AD7 carries low order byte data and AD8AD15 carries

higher order byte data. During the first clock cycle, it carries 16-bit address and after that it carries 16-bit

data.

Address/status bus

A16-A19/S3-S6. These are the 4 address/status buses. During the first clock cycle, it carries 4-bit address

and later it carries status signals.

S7/BHE

 BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of data using data

bus D8-D15. This signal is low during the first clock cycle, thereafter it is active.

Ready

82

 It is available at pin 22. It is an acknowledgement signal from I/O devices that data is transferred. It is an

active high signal. When it is high, it indicates that the device is ready to transfer data. When it is low, it

indicates wait state.

RESET

 It is available at pin 21 and is used to restart the execution. It causes the processor to immediately terminate

its present activity. This signal is active high for the first 4 clock cycles to RESET the microprocessor.

INTR

 It is available at pin 18. It is an interrupt request signal, which is sampled during the last clock cycle of each

instruction to determine if the processor considered this as an interrupt or not.

NMI

 It stands for non-maskable interrupt and is available at pin 17. It is an edge triggered input, which causes an

interrupt request to the microprocessor.

INTA

 It is an interrupt acknowledgement signal and id available at pin 24. When the microprocessor receives this

signal, it acknowledges the interrupt.

ALE

 It stands for address enable latch and is available at pin 25. A positive pulse is generated each time the

processor begins any operation. This signal indicates the availability of a valid address on the address/data

lines.

DEN

 It stands for Data Enable and is available at pin 26. It is used to enable Trans receiver 8286. The trans

receiver is a device used to separate data from the address/data bus.

DT/R

 It stands for Data Transmit/Receive signal and is available at pin 27. It decides the direction of data flow

through the trans receiver. When it is high, data is transmitted out and vice-a-versa.

M/IO

 This signal is used to distinguish between memory and I/O operations. When it is high, it indicates I/O

operation and when it is low indicating the memory operation. It is available at pin 28.

WR

 It stands for write signal and is available at pin 29. It is used to write the data into the memory or the output

device depending on the status of M/IO signal.

HLDA

 It stands for Hold Acknowledgement signal and is available at pin 30. This signal acknowledges the HOLD

signal.

HOLD

83

 This signal indicates to the processor that external devices are requesting to access the address/data buses. It

is available at pin 31.

QS1 and QS0

 These are queue status signals and are available at pin 24 and 25. These signals provide the status of

instruction queue. Their conditions are shown in the following table –

QS0 QS1 Status

0 0 No operation

0 1 First byte of opcode from the queue

1 0 Empty the queue

1 1 Subsequent byte from the queue

S0, S1, S2

 These are the status signals that provide the status of operation, which is used by the Bus Controller 8288 to

generate memory & I/O control signals. These are available at pin 26, 27, and 28. Following is the table

showing their status −

S2 S1 S0 Status

0 0 0 Interrupt acknowledgement

0 0 1 I/O Read

0 1 0 I/O Write

0 1 1 Halt

1 0 0 Opcode fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive

LOCK

84

 When this signal is active, it indicates to the other processors not to ask the CPU to leave the system bus. It

is activated using the LOCK prefix on any instruction and is available at pin 29.

RQ/GT1 and RQ/GT0

 These are the Request/Grant signals used by the other processors requesting the CPU to release the system

bus. When the signal is received by CPU, then it sends acknowledgment. RQ/GT0 has a higher priority than

5.4-General Bus Operation& Physical Memory Organization
Bus operation of 8086 MP

 The 8086 has a combined address and data bus commonly referred as a time multiplexed address and

data bus.

 The main reason behind multiplexing address and data over the same pins is the maximum utilisation

of processor pins and it facilitates the use of 40 pin standard DIP package.

 The bus can be DE multiplexed using a few latches and trans receivers, whenever required.

 Basically, all the processor bus cycles consist of at least four clock cycles. These are referred to as T1,

T2, T3, T4. The address is transmitted by the processor during T1. It is present on the bus only for one

cycle.

 The negative edge of this ALE pulse is used to separate the address and the data or status information.

In maximum mode, the status lines S0, S1 and S2 are used to indicate the type of operation.

 Status bits S3 to S7 are multiplexed with higher order address bits and the BHE signal. Address is valid

during T1 while status bits S3 to S7 are valid during T2 through T4.

85

Maximum mode
 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus controller

derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system configuration.

Minimum mode
 In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum mode by strapping

its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself.

 There is a single microprocessor in the minimum mode system.

Physical Memory organisation of 8086 MP

 There are 20 address lines in the 8086 microprocessor.

 This gives us 220 different memory locations. Hence the total size is 220 Bytes (as each memory

location is Byte Addressable, i.e. one byte of data can be stored at every single location), which is

equal to 1MB.

 Even the memory is byte-addressable, yet the 8086 microprocessor an easily handle up to 16 bits of

data at a time through its 16 data lines.

 So the entire memory in 8086 is divided into two memory banks: odd bank and the even bank.

 The way in which data is read or written is decided by the value of BHE, and the last address bit, that is

the A0 line. It is done in the following way:

BHE' A0 Operation performed on memory

0 0 16 bits of data will be read or written into the memory

0 1 8 bits of data will be read/written into the odd memory bank

1 0 8 bits of data will be read/written into the even memory bank

1 1 No operation is performed

 If the lower byte of the word is stored at even memory bank and the upper byte is stored at odd

memory bank then the CPU will require only 1 memory cycle.

 If the lower byte of the word is located at an odd memory address, then the CPU will require 2 memory

cycles.

86

 The first memory cycle is required for accessing the lower byte of the word through the higher data

bus, i.e. D15 to D8, and the second memory cycle is required for accessing the upper byte of the word

through the lower data bus, i.e. D7 to D0.

5.5-Minimum Mode &Timings.
Minimum mode

 In a minimum mode the microprocessor 8086 is operated in minimum mode by strapping its MN/MX*

pin to logic1.

 In this mode, all the control signals are given out by the microprocessor chip itself.

 The opcode fetch and read cycles are similar.

 Hence the timing diagram can be categorized in two parts, the first is the timing diagram for read cycle

and the second is the timing diagram for write cycle.

Read cycle timing diagram for Minimum mode.
 The working of min mode can be easily understood by timing diagrams.

 All processors bus cycle is of at least 4 T-states (T1, T2, T3, T4) .The address is given by processor in

the T1 state. It is available on the bus for one T-state.

 In T2, the bus is tristated for changing the direction of the bus (in the case of a data read cycle.)

 The data transfer takes place between T3 and T4.

 If the addressed device is slower, then the wait state is inserted between T3 and T4.

Opcode fetch or read timing diagram

 At T1 state ALE =1, this indicates that a valid address is latched on the address bus and also M / IO’=

1, which indicates the memory operation is in progress.

 In T2, the address is removed from the local bus and is sent to the addressed device. Then the bus is

tristated.

 When RD’ = 0, the valid data is present on the data bus.

 During T2 DEN’ =0, which enables transceivers and DT/R’ = 0, which indicates that the data is

received.

 During T3, data is put on the data bus and the processor reads it.

 The output device makes the READY line high.

 This means the output device has performed the data transfer process. When the processor makes the

read signal to 1, then the output device will again tristate its bus drivers.

Write cycle timing diagram for Minimum mode.

87

 At T1 state ALE =1, this indicates that a valid address is latched on the address bus and also M / IO’=

1, which indicates the memory operation is in progress.

 In T2, the processor sends the data to be written to the addressed location.

 The data is buffered on the bus until the middle of T4 state.

 The WR’=0 becomes at the beginning of T2.

 The BHE’ and A0 signals are used to select the byte or bytes of memory or I/O word.

 During T2 DEN’ =0, which enables, transceivers and DT/R’ = 1, which indicates that the data is

transferred by the processor to the addressed device.

5.6-Maximum Mode &Timings

Maximum mode of 8086 Microprocessor
 A processor is in the Maximum Mode Configuration of 8086 when its MN/MX pin is grounded. The

maximum mode defines pins 24 to 31 as follows.

1. QS1, QS0 (output): These two output signals reflect the status of the instruction queue. This status

indicates the activity in the queue during the previous clock cycle.

2. S2, S1, S0 (output): These three status signals indicate the type of transfer to be take place during the

current bus cycle.

 3. LOCK: This signal indicates that an instruction with a LOCK prefix is being executed and the bus is not

to be used by another processor:

 4. RQ/GT1 and RQ/GT0:

https://www.eeeguide.com/wp-content/uploads/2018/08/Maximum-Mode-Configuration-of-8086.jpg
https://www.eeeguide.com/wp-content/uploads/2018/08/Maximum-Mode-Configuration-of-8086-1.jpg

88

 In the Maximum Mode Configuration of 8086, HOLD and HLDA pins are replaced by RQ (Bus

request)/GT0 (Bus Grant), and RQ/GT1 signals.

 By using bus request signal another master, can request for the system bus and processor communicate.

That the request is granted to the requesting master by using bus grantnal. Both signals are similar

except the RQ/GT0 has higher priority than RQ/GT1.

 In the maximum mode additional circuitry is required to translate the control signals. The additional

circuitry converts the status signals (S2-S0) into the I/O and memory transfer signals.

 It also generates the control signals required to direct the data flow and for controlling 8282 latches

and 8286 transceivers. The Intel 8288 bus controller is used to implement this control circuitry.

Timing Diagram for Input Read operation of 8086

https://www.eeeguide.com/wp-content/uploads/2018/08/Maximum-Mode-Configuration-of-8086-2.jpg
https://www.eeeguide.com/wp-content/uploads/2018/08/Maximum-Mode-Configuration-of-8086-4.jpg

89

 S0, S1, S2 are set at the beginning of bus cycle. On detecting the change on passive state S0 = S1 = S2 =

1, the 8288 bus controller will output a pulse on its ALE and apply a required signal to its DT/R pin

during T1.

 In T2, 8288 will set DEN = 1 thus enabling transceiver. For an input, 8288 it will activates MRDC or

IORC.

 These signals are activated until T4. For an output, the AMWC or AIOWC is activated from T2 to

T4 and MWTC or IOWC is activated from T3 to T4.

 The status bits S0 to S2 remain active until T3, and become passive during T3 and T4.

 If ready input is not activated before T3, wait state will be inserted between T3 and T4.

5.7-Interrupts And Interrupt Service Routines, Interrupt Cycle, Non-

Mask Able Interrupt, Mask Able Interrupt
Interrupt

 Interrupt is the method of creating a temporary halt during program execution and allows peripheral

devices to access the microprocessor.

 The microprocessor responds to that interrupt with an ISR (Interrupt Service Routine), which is a

short program to instruct the microprocessor on how to handle the interrupt.

 The following image shows the types of interrupts we have in a 8086 microprocessor −

Hardware Interrupts
 Hardware interrupt is caused by any peripheral device by sending a signal through a specified pin to

the microprocessor.

 The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-mask able interrupt and

INTR is a mask able interrupt having lower priority.

 One more interrupt pin associated is INTA called interrupt acknowledge.

Software Interrupts
 Some instructions are inserted at the desired position into the program to create interrupts.

 These interrupt instructions can be used to test the working of various interrupt handlers.

 256 interrupts are there

INT n is invoked as software interrupts- n is the type no in the range 0 to 255(00 to FF)

Interrupts are divided into three groups

Type 0 to Type4 (Dedicated Interrupts)

TYPE 0 interrupt represents division by zero situation.

TYPE 1 interrupt represents single-step execution during the debugging of a program.

TYPE 2 interrupt represents non-mask able NMI interrupt.

TYPE 3 interrupt represents break-point interrupt.

TYPE 4 interrupt represents overflow interrupt.

90

Interrupt Service Routine (ISR)
 Stands for "Interrupt Service Routine." An ISR (also called an interrupt handler) is a software process

invoked by an interrupt request from a hardware device.

 It handles the request and sends it to the CPU, interrupting the active process. When the ISR is

complete, the process is resumed.

 A basic example of an ISR is a routine that handles keyboard events, such as pressing or releasing a

key.

 Each time a key is pressed, the ISR processes the input. For example, if you press and hold the right

arrow key in a text file, the ISR will signal to the CPU that the right arrow key is depressed.

 The CPU sends this information to the active word processor or text editing program, which will move

the cursor to the right.

 When you let go of the key, the ISR handles the "key up" event. This interrupts the previous "key

down" state, which signals to the program to stop moving the cursor.

 The group of memory locations set aside to hold the addresses of ISRs is called the interrupt vector

table

NMI (Non mask-able interrupt)-
 This is a non-mask-able, edge triggered, high priority interrupt.

 On receiving an interrupt on NMI line, the microprocessor executes INT.

 Microprocessor obtains the ISR address from location 2 x 4 = 00008H from the IVT (Interrupt vector

Table).

 It reads 4 locations starting from this address to get the values for IP and CS to execute the ISR.

MI (Mask-able Interrupt)-
 If the interrupts are disabled using clear interrupt Flag instruction, the microprocessor will not get

interrupted even if INTR is activated.

 That is, INTR can be masked.

 INTR is a non-vectored interrupt, which means, the 8086 does not 6 know where to branch to service

the interrupt.

 The 8086 has to be told by an external device like a Programmable Interrupt controller regarding the

branch.

 Whenever the INTR pin is activated by an I/O port, if Interrupts are enabled and NMI is not active at

that time, the microprocessor finishes the current instruction that is being executed and gives out a ‘0’

on INTA pin twice.

 When INTA pin goes low for the first time, it asks the external device to get ready. In response to the

second INTA the microprocessor receives the 8 bit.

5.8-8086 Instruction Set & Programming: Addressing Modes, Instruction

Set, Assembler Directives And Operators
Addressing Modes of 8086 MP
1-Immediate addressing mode-

 In this mode, the operand is specified in the instruction itself. Instructions are longer but the operands

are easily identified.

 Example:

 MOV CL, 12H

 This instruction moves 12 immediately into CL register. CL ← 12H

2-Register addressing mode-

 In this mode, operands are specified using registers. This addressing mode is normally preferred

because the instructions are compact and fastest executing of all instruction forms.

 Registers may be used as source operands, destination operands or both.

 Example:

 MOV AX, BX

https://techterms.com/definition/software
https://techterms.com/definition/hardware
https://techterms.com/definition/cpu
https://techterms.com/definition/process
https://techterms.com/definition/keyboard
https://techterms.com/definition/input
https://techterms.com/definition/wordprocessor
https://techterms.com/definition/cursor

91

 This instruction copies the contents of BX register into AX register. AX ← BX

3-Direct memory addressing mode-

 In this mode, address of the operand is directly specified in the instruction. Here only the offset address

is specified, the segment being indicated by the instruction.

 Example:

 MOV CL, [4321H]

 This instruction moves data from location 4321H in the data segment into CL.

 The physical address is calculated as

 DS * 10H + 4321

 Assume DS = 5000H

 ∴PA = 50000 + 4321 = 54321H

 ∴CL ← [54321H]

5-Register based indirect addressing mode-

 In this mode, the effective address of the memory may be taken directly from one of the base register

or index register specified by instruction. If register is SI, DI and BX then DS is by default segment

register.

 If BP is used, then SS is by default segment register.

 Example:

 MOV CX, [BX]

 This instruction moves a word from the address pointed by BX and BX + 1 in data segment into CL

and CH respectively.

 CL ← DS: [BX] and CH ← DS: [BX + 1]

 Physical address can be calculated as DS * 10H + BX.

6-Register relative addressing mode-

 In this mode, the operand address is calculated using one of the base registers and an 8 bit or a 16 bit

displacement.

 Example:

 MOV CL, [BX + 04H]

 This instruction moves a byte from the address pointed by BX + 4 in data segment to CL.

 CL ← DS: [BX + 04H]

 Physical address can be calculated as DS * 10H + BX + 4H.

7-Base indexed addressing mode-

 Here, operand address is calculated as base register plus an index register.

 Example:

 MOV CL, [BX + SI]

 This instruction moves a byte from the address pointed by BX + SI in data segment to CL.

 CL ← DS: [BX + SI]

 Physical address can be calculated as DS * 10H + BX + SI.

8-Relative based indexed addressing mode-

 In this mode, the address of the operand is calculated as the sum of base register, index register and 8

bit or 16 bit displacement.

 Example:

 MOV CL, [BX + DI + 20]

 This instruction moves a byte from the address pointed by BX + DI + 20H in data segment to CL.

 CL ← DS: [BX + DI + 20H]

 Physical address can be calculated as DS * 10H + BX + DI + 20H.

9-Implied addressing mode-

 In this mode, the operands are implied and are hence not specified in the instruction.

 Example:

 STC

 This sets the carry flag.

Instruction set of 8086 Microprocessor-

92

The 8086 microprocessor supports 8 types of instructions −

1-Data Transfer Instructions

2-Arithmetic Instructions

3-Bit Manipulation Instructions

4-String Instructions

5-Program Execution Transfer Instructions (Branch & Loop Instructions)

6-Processor Control Instructions

7-Iteration Control Instructions

8-Interrupt Instructions

1-Data Transfer Instructions
 These instructions are used to transfer the data from the source operand to the destination operand.

Following are the list of instructions under this group −

MOV − Used to copy the byte or word from the provided source to the provided destination.

PPUSH − Used to put a word at the top of the stack.

POP − Used to get a word from the top of the stack to the provided location.

PUSHA − Used to put all the registers into the stack.

POPA − Used to get words from the stack to all registers.

XCHG − Used to exchange the data from two locations.

XLAT − Used to translate a byte in AL using a table in the memory.

Instructions for input and output port transfer
IN − Used to read a byte or word from the provided port to the accumulator.

OUT − Used to send out a byte or word from the accumulator to the provided port.

Instructions to transfer the address
LEA − Used to load the address of operand into the provided register.

LDS − Used to load DS register and other provided register from the memory

LES − Used to load ES register and other provided register from the memory.

Instructions to transfer flag registers
LAHF − Used to load AH with the low byte of the flag register.

SAHF − Used to store AH register to low byte of the flag register.

PUSHF − Used to copy the flag register at the top of the stack.

POPF − Used to copy a word at the top of the stack to the flag register.

2-Arithmetic Instructions
 These instructions are used to perform arithmetic operations like addition, subtraction, multiplication,

division, etc.

Instructions to perform addition
ADD − Used to add the provided byte to byte/word to word.

ADC − Used to add with carry.

INC − Used to increment the provided byte/word by 1.

AAA − Used to adjust ASCII after addition.

DAA − Used to adjust the decimal after the addition/subtraction operation.

Instructions to perform subtraction
SUB − Used to subtract the byte from byte/word from word.

SBB − Used to perform subtraction with borrow.

DEC − Used to decrement the provided byte/word by 1.

NPG − Used to negate each bit of the provided byte/word and add 1/2’s complement.

CMP − Used to compare 2 provided byte/word.

AAS − Used to adjust ASCII codes after subtraction.

DAS − Used to adjust decimal after subtraction.

Instruction to perform multiplication
MUL − Used to multiply unsigned byte by byte/word by word.

IMUL − Used to multiply signed byte by byte/word by word.

AAM − Used to adjust ASCII codes after multiplication.

93

Instructions to perform division
DIV − Used to divide the unsigned word by byte or unsigned double word by word.

IDIV − Used to divide the signed word by byte or signed double word by word.

AAD − Used to adjust ASCII codes after division.

CBW − Used to fill the upper byte of the word with the copies of sign bit of the lower byte.

CWD − Used to fill the upper word of the double word with the sign bit of the lower word.

3-Bit Manipulation Instructions
 These instructions are used to perform operations where data bits are involved, i.e. operations like

logical, shift, etc.

Instructions to perform logical operation
NOT − Used to invert each bit of a byte or word.

AND − Used for adding each bit in a byte/word with the corresponding bit in another byte/word.

OR − Used to multiply each bit in a byte/word with the corresponding bit in another byte/word.

XOR − Used to perform Exclusive-OR operation over each bit in a byte/word with the corresponding bit in

another byte/word.

TEST − Used to add operands to update flags, without affecting operands.

Instructions to perform shift operations
SHL/SAL − Used to shift bits of a byte/word towards left and put zero(S) in LSBs.

SHR − Used to shift bits of a byte/word towards the right and put zero(S) in MSBs.

SAR − Used to shift bits of a byte/word towards the right and copy the old MSB into the new MSB.

Instructions to perform rotate operations
ROL − Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and to Carry Flag [CF].

ROR − Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to Carry Flag [CF].

RCR − Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to MSB.

RCL − Used to rotate bits of byte/word towards the left, i.e. MSB to CF and CF to LSB.

4-String Instructions
 String is a group of bytes/words and their memory is always allocated in a sequential order.

REP − Used to repeat the given instruction till CX ≠ 0.

REPE/REPZ − Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

REPNE/REPNZ − Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

MOVS/MOVSB/MOVSW − Used to move the byte/word from one string to another.

COMS/COMPSB/COMPSW − Used to compare two string bytes/words.

INS/INSB/INSW − Used as an input string/byte/word from the I/O port to the provided memory location.

OUTS/OUTSB/OUTSW − Used as an output string/byte/word from the provided memory location to the I/O

port.

SCAS/SCASB/SCASW − Used to scan a string and compare its byte with a byte in AL or string word with a

word in AX.

LODS/LODSB/LODSW − Used to store the string byte into AL or string word into AX.

5-Program Execution Transfer Instructions (Branch and Loop Instructions)
 These instructions are used to transfer/branch the instructions during an execution. It includes the

Instructions to transfer the instruction during an execution without any condition

CALL − Used to call a procedure and save their return address to the stack.

RET − Used to return from the procedure to the main program.

JMP − Used to jump to the provided address to proceed to the next instruction.

Instructions to transfer the instruction during an execution with some conditions −

JA/JNBE − Used to jump if above/not below/equal instruction satisfies.

JAE/JNB − Used to jump if above/not below instruction satisfies.

JBE/JNA − Used to jump if below/equal/ not above instruction satisfies.

JC − Used to jump if carry flag CF = 1

94

JE/JZ − Used to jump if equal/zero flag ZF = 1

JG/JNLE − Used to jump if greater/not less than/equal instruction satisfies.

JGE/JNL − Used to jump if greater than/equal/not less than instruction satisfies.

JL/JNGE − Used to jump if less than/not greater than/equal instruction satisfies.

JLE/JNG − Used to jump if less than/equal/if not greater than instruction satisfies.

JNC − Used to jump if no carry flag (CF = 0)

JNE/JNZ − Used to jump if not equal/zero flag ZF = 0

JNO − Used to jump if no overflow flag OF = 0

JNP/JPO − Used to jump if not parity/parity odd PF = 0

JNS − Used to jump if not sign SF = 0

JO − Used to jump if overflow flag OF = 1

JP/JPE − Used to jump if parity/parity even PF = 1

JS − Used to jump if sign flag SF = 1

6-Processor Control Instructions
These instructions are used to control the processor action by setting/resetting the flag values.

STC − Used to set carry flag CF to 1

CLC − Used to clear/reset carry flag CF to 0

CMC − Used to put complement at the state of carry flag CF.

STD − Used to set the direction flag DF to 1

CLD − Used to clear/reset the direction flag DF to 0

STI − Used to set the interrupt enable flag to 1, i.e., enable INTR input.

CLI − Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

7-Iteration Control Instructions
These instructions are used to execute the given instructions for number of times.

LOOP − Used to loop a group of instructions until the condition satisfies, i.e., CX = 0

LOOPE/LOOPZ − Used to loop a group of instructions till it satisfies ZF = 1 & CX = 0

LOOPNE/LOOPNZ − Used to loop a group of instructions till it satisfies ZF = 0 & CX = 0

JCXZ − Used to jump to the provided address if CX = 0

8-Interrupt Instructions
These instructions are used to call the interrupt during program execution.

INT − Used to interrupt the program during execution and calling service specified.

INTO − Used to interrupt the program during execution if OF = 1

IRET − Used to return from interrupt service to the main program

Assembler directives of 8086 microprocessor
Introduction:

 Assembler directives are the directions to the assembler .which indicate how an operand or section of

the program is to be processed.

 These are also called pseudo operations which are not executable by the microprocessor.

Assembler directives:

The various directives are-

1. ASSUME: The ASSUME directive is used to inform the assembler the name of the logical segment it

should use for a specified segment.

Ex: ASSUME DS: DATA tells the assembler that for any program instruction which refers to the data

segment, it should use the logical segment called DATA.

2. DB -Define byte. It is used to declare a byte variable or set aside one or more storage locations of type byte

in memory.

For example, CURRENT_VALUE DB 36H tells the assembler to reserve 1 byte of memory for a variable

named CURRENT_ VALUE and to put the value 36 H in that memory location when the program is loaded

into RAM .

3. DW -Define word. It tells the assembler to define a variable of type word or to reserve storage locations of

type word in memory.

95

4. DD(define double word) :This directive is used to declare a variable of type double word or restore memory

locations which can be accessed as type double word.

5.DQ (define quad word) :This directive is used to tell the assembler to declare a variable 4 words in

length or to reserve 4 words of storage in memory .

6.DT (define ten bytes):It is used to inform the assembler to define a variable which is 10 bytes in length or to

reserve 10 bytes of storage in memory.

7. EQU –Equate it is used to give a name to some value or symbol. Every time the assembler finds the given

name in the program, it will replace the name with the value or symbol we have equated with that name

8. ORG (Originate): The ORG statement changes the starting offset address of the data.

It allows to set the location counter to a desired value at any point in the program. For example the statement

ORG 3000H tells the assembler to set the location counter to 3000H.

9 .PROC- Procedure: It is used to identify the start of a procedure. Or subroutine.

10. END- End program .This directive indicates the assembler that this is the end of the program module. The

assembler ignores any statements after an END directive.

11. ENDP- End procedure: It indicates the end of the procedure (subroutine) to the assembler.

12. ENDS-End Segment: This directive is used with the name of the segment to indicate the end of that logical

segment.

Ex: CODE SEGMENT: Start of logical segment containing code

 CODE ENDS : End of the segment named CODE.

Different Assembler Operator in 8085 Microprocessor
Different types of operators are:

1) Arithmetic: + , - , * , /

2) Logical : AND, OR, XOR, NOT

3) SHL and SHR: Shift during assembly

4) []: index

5) HIGH: returns higher byte of an expression

6) OFFSET: returns offset address of a variable

7) SEG: returns segment address of a variable

8) PTR: used with type specifications BYTE, WORD, RWORD, DWORD, QWORD E.g. INC

BYTE PTR [BX]

9) Segment override MOV AH, ES: [BX]

5.9-Simple Assembly Language Programming Using 8086 Instructions
1-Write a Program for Read a Character from the Keyboard

 MOV ah, 1h //keyboard input subprogram

 INT 21h // character input

 // character is stored in al

 MOV c, al //copy character from alto c
2-Write a Program for Reading and Displaying a Character

 MOV ah, 1h // keyboard input subprogram

 INT 21h //read character into al

 MOV dl, al //copy character to dl

 MOV ah, 2h //character output subprogram

 INT 21h // display character in dl

3-Assembly language programming using 8086 Microprocessor.

Addition
 ORG0000h

 MOV DX, #07H // move the value 7 to the register AX//

 MOV AX, #09H // move the value 9 to accumulator AX//

 Add AX, 00H // add CX value with R0 value and stores the result in AX//

96

 END

Multiplication

 ORG0000h

 MOV DX, #04H // move the value 4 to the register DX//

 MOV AX, #08H // move the value 8 to accumulator AX//

 MUL AX, 06H // Multiplied result is stored in the Accumulator AX //

 END

Subtraction

 ORG 0000h

 MOV DX, #02H // move the value 2 to register DX//

 MOV AX, #08H // move the value 8 to accumulator AX//

 SUBB AX, 09H // Result value is stored in the Accumulator A X//

 END

Division

 ORG 0000h

 MOV DX, #08H // move the value 3 to register DX//

 MOV AX, #19H // move the value 5 to accumulator AX//

 DIV AX, 08H // final value is stored in the Accumulator AX //

 END

POSSIBLE SHORT TYPE QUESTION WITH ANSWER
Q 1-What is the size of address and data bus in 8086 MP. (19-W)

Ans-
 Size of 8085 is 8-bit microprocessor,

 Whereas 8086 is 16-bit microprocessor.

 Address Bus is 8085 has 16- bit address bus while 8086 has 20-bit address bus.

 Memory − 8085 can access up to 64Kb, whereas 8086 can access up to 1 Mb of memory.

Q2-Write different memory segment used in 8086 MP and their functions. (S-23)

Ans-
 The Bus Interface Unit (BIU) contains four 16 bit special purpose registers (mentioned below) called

as Segment Registers.

 Code segment register (CS): is used for addressing memory location in the code segment of the

memory, where the executable program is stored.

 Data segment register (DS): points to the data segment of the memory where the data is stored.

 Extra Segment Register (ES): also refers to a segment in the memory which is another data segment

in the memory.

 Stack Segment Register (SS): is used for addressing stack segment of the memory. The stack

segment is that segment of memory which is used to store stack data

Q3-Difference between the minimum and maximum mode of 8086 MP

In minimum mode there can be only one processor i.e.

8086.

In maximum mode there can be multiple

processors with 8086, like 8087 and 8089.

ALE for the latch is given by 8086 as it is the only

processor in the circuit.

ALE for the latch is given by 8288 bus controller

as there can be multiple processors in the circuit.

Multiprocessing cannot be performed hence

performance is lower.

As multiprocessing can be performed, it can give

very high performance.

Q5-Mention the name of flags available in status register of 8086 MP. (S-24)
Flags is a 16-bit register containing 9 one-bit flags.

 Overflow Flag (OF)

 Direction Flag (DF)

97

 Interrupt-enable Flag (IF).

 Single-step Flag (TF)

 Sign Flag (SF

 Zero Flag (ZF)

 Auxiliary carry Flag (AF)

 Parity Flag (PF)

 Carry Flag (CF)

Q6-Define NMI in 8086 MP
 NMI is a non-mask able interrupt.

 Interrupt is processed in the same way as the INTR interrupt. Interrupt type of the NMI is 2, i.e. the

address of the NMI processing routine is stored in location 0008h.

 This interrupt has higher priority than the mask able interrupt.

Q7- What is the maximum memory size that can be addressed by 8086 MP. (S-24)
 Ans: - The maximum memory size that can be addressed by an 8086 microprocessor is 1 (MB).

 Explanation: - The 8086 has a 20-bit address bus, which allows it to access 2^20 memory location1 MB.

 Address bus size: 20 bits

 Maximum addressable memory: 1 MB

POSSIBLE LONG TYPE QUESTION

Q1-With neat diagram explains architecture of 8086 MP. (S-24)

Q2-Explain pin description of 8086 MP.

Q3-Explain function of different flags in 8086 MP.

Q4-Explain different addressing mode in 8086 MP With examples.

Q5-What is the different between the MUL and IMUL instruction in 8086 MP.(S-23)

Q6- What is different between the DIV and IDIV instruction in 8086 MP.

 Q7-Explain minimum mode of 8086 MP.

Q8-Explain maximum mode of 8086 MP.

Q9- Write an assembly language programming to add two 16-bit number. (S-23)

Q10- Write an assembly language programming to subtract two 16-bit number.

Q11- Write an assembly language programming for multiplication of 16-bit numbers using 8086 instructions.

 (S-24)

98

Chapter No- 06

Microcontroller (architecture and programming-8bit)

 Learning Object-

6.1-Distinguish between Microprocessor & Microcontroller.

6.2-8 bit & 16-bit microcontroller.

6.3-CISC & RISC processor.

6.4-Architecture of 8051Microcontroller.

6.5-Signal Description of 8051Microcontrollers.

6.6-Memory Organization-RAM structure, SFR.

6.7-Registers, timers, interruptsof8051Microcontrollers.

6.8-Addressing Modes of 8051.

6.9-Simple 8051 Assembly Language Programming Arithmetic& Logic Instructions, JUMP,

LOOP, CALL Instructions, I/O Port Programming.

6.10-Interrupts, Timer & Counters.

6.11-Serial Communication.

6.12-Microcontroller Interrupts and Interfacing to 8255.

6.1- Distinguish Between Microprocessor &Microcontroller

Microprocessor Microcontroller

Microprocessor is the heart of Computer system.
Micro Controller is the heart of an embedded

system.

It is only a processor, so memory and I/O components

need to be connected externally

Micro Controller has a processor along with internal

memory and I/O components.

Memory and I/O has to be connected externally, so the

circuit becomes large.

Memory and I/O are already present, and the

internal circuit is small.

You can’t use it in compact systems You can use it in compact systems.

Cost of the entire system is high Cost of the entire system is low

Due to external components, the total power

consumption is high. Therefore, it is not ideal for the

devices running on stored power like batteries.

As external components are low, total power

consumption is less. So it can be used with devices

running on stored power like batteries.

99

6.2- 8-bit & 16-bit microcontroller

 A microcontroller is a single and small chip having integrated circuit, processor core and embedded

programmable I/O peripherals. 1 bit to 512 bit are common example of microcontrollers.

8-bit Microcontroller

 8-bit microcontroller is kind of microcontroller having all characteristics of microcontroller and its

data units are mostly 8 bits wide.

 8 bits wide means your CPU can use 8-bit data bus or pipe and can access the same size data by a

single device instruction.

 For every cycle of instruction its range is 0 to 255. It requires 20mA current to work. Intel 8008 was

the first model having 8-bit micro-controller.

16-bit Microcontroller

 16-bit microcontroller is more advanced than 8-bit microcontroller.

 It is more accurate and precise in performing mathematical and technical tasks.

 For every cycle of instruction its bit range is extended from 0 to 65,535.

 As 16-bit controller is two time more than 8-bit controller, it can work on two 16 bit numbers. It

requires 10mA current to perform.

6.3-CISC & RISC Processor

Difference between the RISC and CISC Processors

RISC CISC

It is a Reduced Instruction Set Computer. It is a Complex Instruction Set Computer.

It emphasizes on software to optimize the

instruction set.

It emphasizes on hardware to optimize the

instruction set.

It is a hard wired unit of programming in the

RISC Processor.

Microprogramming unit in CISC Processor.

It requires multiple register sets to store the

instruction.

It requires a single register set to store the

instruction.

RISC has simple decoding of instruction. CISC has complex decoding of instruction.

Uses of the pipeline are simple in RISC. Uses of the pipeline are difficult in CISC.

It uses a limited number of instruction that

requires less time to execute the instructions.

It uses a large number of instruction that requires

more time to execute the instructions.

100

RISC Processor

 RISC stands for Reduced Instruction Set Computer Processor, a microprocessor architecture with

a simple collection and highly customized set of instructions.

 It is built to minimize the instruction execution time by optimizing and limiting the number of

instructions. It means each instruction cycle requires only one clock cycle, and each cycle contains

three parameters: fetch, decode and execute.

 The RISC processor is also used to perform various complex instructions by combining them into

simpler ones.

 RISC chips require several transistors, making it cheaper to design and reduce the execution time for

instruction. Examples of RISC processors are SUN's SPARC, PowerPC, Microchip PIC processors,

RISC-V.

RISC Architecture

CISC Processors Architecture

 The CISC architecture helps reduce program code by embedding multiple operations on each

program instruction, which makes the CISC processor more complex.

 The CISC architecture-based computer is designed to decrease memory costs because large programs

or instruction required large memory space to store the data,

6.4-Architecture of 8051Microcontroller

8051 Microcontroller Architecture

 The internal architecture of 8051 Microcontroller represented in form of block diagram.

101

CPU (Central Processing Unit):

 CPU act as a mind of any processing machine. It synchronizes and manages all processes that are

carried out in microcontroller.

 User has no power to control the functioning of CPU.

 CPU manage the different types of registers available in 8051 microcontroller.

Interrupts:

 Interrupts is a sub-routine call that given by the microcontroller when some other program with high

priority is request for acquiring the system buses.

Types of interrupt in 8051 Microcontroller:

 The five sources of interrupts in 8051 Microcontroller:

1-Timer 0 overflow interrupt - TF0

2-Timer 1 overflow interrupt - TF1

3-External hardware interrupt - INT0

4-External hardware interrupt - INT1

5-Serial communication interrupt - RI/TI

Memory:

 For operation Micro-controller required a program. This program guides the microcontroller to

perform the specific tasks.

 Microcontroller also required memory for storage of data and operands for the short duration.

Bus:

 Bus is a group of wires which uses as a communication canal or acts as means of data transfer.

 The different bus configuration includes 8, 16 or more cables.

 Therefore, a bus can bear 8 bits, 16 bits all together.

Types of buses in 8051 Microcontroller:

Address Bus:

 8051 microcontrollers are consisting of 16-bit address bus.

 It is generally be used for transferring the data from Central Processing Unit to Memory.

Data bus:

102

 8051 microcontrollers are consisting of 8 bits’ data bus.

 It is generally be used for transferring the data from one peripherals position to other peripherals.

Oscillator:

 As the microcontroller is digital circuit therefore it needs timer for their operation.

 To perform timer operation inside microcontroller it required externally connected or on-chip

oscillator.

 Microcontroller is used inside an embedded system for managing the function of devices. Therefore,

8051 uses the two 16 bit counters and timers.

 For the operation of this timers and counters the oscillator is used inside microcontroller.

6.5- Signal Description of 8051Microcontrollers

Pins 1-8: These pins belongs to Port 1 of microcontroller. Port 1 is used as domestically pulled up, quasi bi

directional input/output port.

Pin 9: It is a RESET pin which is utilized to set the microcontroller 8051 to its primary value. During the

beginning of an application the RESET pin is to be set elevated for two machine rotations.

Pins 10-17: These pins belong to Port 3 of microcontroller. Port 3 can be used for number of functions such

as timer input, interrupts, serial communication indicator for transmitting (TxD) and receiving (RxD). It is

also known as domestic pull up port with quasi bi direction port embedded within.

Pins 18 and 19: These pins are generally be used for interfacing outer crystal oscillator with given system

clock.

Pin 20: This pin titled as Vss. It symbolizes ground voltage or 0 V is connected to this pin of

microcontroller.

103

Pin 21-28: These pins belong to port 2 of microcontroller. Port 2 can be used as Input/output port, senior

order address bus is multiplexed with this quasi bi directional port.

Pin 29: This pin belongs to Program Store Enable or PSEN. It is used for interpreting the sign from outer

program memory.

Pin 30: This pin belongs to External Access or EA input is used for permit or prohibits outer memory

interfacing. If there is no outer memory need, this pin is set to high by linking it with supply voltage .

Pin 31: This pin belongs to Address Latch Enable or ALE is used for de-multiplexing the address data

indication of port 0 for outer memory interfacing

Pin 32-39: These pins belong to Port 0 of the microcontroller. Port 0 can be used as input/output port, lower

order address and data bus signals are multiplexed with this port. This pin act as bi directional Input/output

port and outer connected pull up resistors are necessary for utilizing these ports as Input/output.

Pin 40: This pin is used to provide power supply to the circuit.

6.6-Memory Organization-RAM structure, SFR

Memory Organization of RAM

 The internal data memory of 8051 is divided into two groups.

 These are a set of eight registers and a scratch pad memory.

 These eight registers are R0 toR7.

 The address range 00H to 07H is used to access the registers, and the rest are scratch pad memory.

8051 Provides four register bank, but only one register bank can be used at any point in time. To select the

register bank, two bits of PSW (Program Status Word) are used.

So the following addressing can be used to select register banks.

Address Range Register Bank

00H to 07H Register Bank 0

08H to 0FH Register Bank 1

10H to 17H Register Bank 2

104

Address Range Register Bank

18H to 1FH Register Bank 3

 When all of the register banks are being used, the scratch pad area will be 20H to 7FH. But from 20H

to 2FH (16 bytes or 128 bits) can be used as bit addressable RAM.

 By using some simple instructions with 8-bit memory address we can check the bit addressing. For

an example the instruction CLR 6FH, using this instruction it clears the location 6FH.

Stack

 The stack area in 8051always can be implemented in the internal data memory.

 Here the stack pointer (SP) is an only 8-bit register, because the internal RAM area is only in range

00H to 7FH, and when all register banks are being used, the stack location will be in range 30H to

7FH.

 So in such a case, the SP will be initialized with 2FH.

105

 The stack pointer SP increases before each PUSH operation and decreases after each pop

instruction.

 When the 8051 is reset, the Stack Pointer will point to 07H.

 The location 08H to 7FHcan be used as a stack. We are assuming that the register bank 0 is in use

and 20H to 27H are not like bit-addressable area.

8051 Microcontroller Special Function Registers (SFRs)

 The 8051 Microcontroller Special Function Registers act as a control table that monitor and control

the operation of the 8051 Microcontroller.

 In Internal RAM Structure, the Address Space from 80H to FFH is allocated to SFRs.

 Out of these 128 Memory Locations (80H to FFH), there are only 21 locations that are actually

assigned to SFRs.

 Each SFR has one Byte Address and also a unique name which specifies its purpose.

 All the 21 8051 Microcontroller Special Function Registers (SFRs) along with their functions and

Internal RAM Address is given in the following table.

106

6.7-Registers, timers, interruptsof8051Microcontrollers

Types of Registers of 8051 MC

The 8051 microcontroller contains mainly two types of registers:

 The 8051 microcontroller consists of 256 bytes of RAM,

 General-purpose registers (Byte addressable registers)

 Special function registers (Bit addressable registers)

General purpose Register

 The general-purpose memory is called as the RAM of the 8051 microcontrollers, which is divided

into 3 areas such as banks, bit-addressable area, and scratch-pad area.

 The banks contain different general- purpose registers such as R0-R7, and all such registers are

byte-addressable registers that store or remove only 1-byte of data.

https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

107

PSW (Program Status Word) Register

 The PSW register is a bit and byte-addressable register.

 This register reflects the status of the operation that is carried out in the controller.

 The physical address of the PSW starts from D0h and the individual bits are accessed with D0h to

D7h.

Carry Flag (C): The Address of the Carry flag is D7. This carry flag is affected when the bit is generated

from the

When C=0 carry resets C=1 carry sets

Carry Flag

Auxiliary Flag(AC): The address of the auxiliary carry is D5. This auxiliary carry is affected when a bit is

generated from the 3rd position to the 4th position.

AC=0 auxiliary is reset AC=1 auxiliary is set

Overflow Flag (OV): The address of the overflow flag is D2. When a bit is generated from the 6th position

to the 7th position, then the overflow flag is affected.

OV=0 overflow flag resets OV=1 overflow flag sets

108

Parity Flag (P): The address of the parity flag is D0. While performing arithmetic operations, if the result is

1, then the parity flag is set – otherwise, reset.

RS1 and RS0

The RS1 and RS0, the bits in the PSW register, are used to select different memory locations (bank0 to

bank4) in the RAM.

Times of 8051
 In Intel 8051, there are two 16-bit timer registers.

 These registers are known as Timer0 andTimer1.

 The timer registers can be used in two modes.

 These modes are Timer mode and the Counter mode.

 There are four different modes of the Timer or Counter.

 The Mode 0 to Mode 2 are for both of the Timer/Counter.

 Mode 3 has a different meaning for each timer register.

 There is a register called TMOD. This register can be programmed to configure these timers or

counters.

TMOD Register

TMOD (Timer Mode) is an SFR. The address of this register is 89H.

Timer Timer1 Mode Timer0 Mode

Bit Details Gate (G) C/T M1 M0 Gate (G) C/T M1 M0

109

In the following table, we will see the bit details and their different operations for high or low value.

Bit Details High Value(1) Low Value(0)

C/T Configure for the Counter operations Configure for the Timer operations

Gate (G) Timer0 or Timer1 will be in Run Mode

when TRX bit of TCON register is high.

Timer0 or Timer1 will be in Run Mode

when TRX bit of TCON register is high

and INT0 or INT1 is high.

Bit Details 00 01 10 11

M1 M0 This is for Mode 0.

(8-bit timer/counter,

with 5-bit pre-scaler)

This is Mode 1.

(16-bit

timer/counter)

This is Mode 3

(8-bit auto reload-

timer/counter)

This is Mode 3 (The

function depends on

Timer0 or Timer1)

Types of Interrupts in 8051 Microcontroller

 The 8051 microcontroller can recognize five different events that cause the main program to interrupt

from the normal execution. These five sources of interrupts in 8051are:

 Timer 0 overflow interrupt- TF0

 Timer 1 overflow interrupt- TF1

 External hardware interrupt- INT0

 External hardware interrupt- INT1

 Serial communication interrupt- RI/TI

 The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external

interrupts are generated by additional interfacing devices or switches that are externally connected to

the microcontroller.

 These external interrupts can be edge triggered or level triggered. When an interrupt occurs, the

microcontroller executes the interrupt service routine so that memory location corresponds to the

interrupt that enables it.

https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/

110

6.8-Addressing Modes of 8051

 In 8051 there are 1-byte, 2-byte instructions and very few 3-byte instructions are present.

 The opcodes are 8-bit long. As the opcodes are 8-bit data, there are 256 possibilities.

 Among 256, 255 opcodes are implemented.

 The clock frequency is12MHz, so 64 instruction types are executed in just 1 µs, and rest are just 2 µs.

The Multiplication and Division operations take 4 µs to execute.

In 8051 There are six types of addressing modes.

 Immediate Addressing Mode

 Register Addressing Mode

 Direct Addressing Mode

 Register Indirect Addressing Mode

 Indexed Addressing Mode

 Implied Addressing Mode

Immediate Addressing mode

 In this Immediate Addressing Mode, the data is provided in the instruction itself.

 The data is provided immediately after the opcode.

 These are some examples of Immediate Addressing Mode.

 MOVA, #0AFH; MOVR3, #45H; MOVDPTR, #FE00H;

Register addressing mode

 In the register addressing mode the source or destination data should be present in a register (R0 to

R7). These are some examples of Register Addressing Mode.

 MOVA, R5; MOVR2, #45H; MOVR0, A;

 In 8051, there is no instruction like MOVR5, R7. But we can get the same result by using this

instruction MOV R5,

Direct Addressing Mode

 In the Direct Addressing Mode, the source or destination address is specified by using 8-bit data in

the instruction.

 Only the internal data memory can be used in this mode.

 Here some of the examples of direct Addressing Mode.

MOV80H, R6; MOVR2, 45H; MOVR0, 05H;

Register indirect addressing Mode

 In this mode, the source or destination address is given in the register.

 By using register indirect addressing mode, the internal or external addresses can be accessed.

 The R0 and R1 are used for 8-bit addresses, and DPTR is used for 16-bit addresses, no other registers

can be used for addressing purposes.

 some examples of this mode.

MOV0E5H, @R0; MOV@R1, 80H

In the instructions, the @ symbol is used for register indirect addressing

Indexed addressing mode

111

 In the indexed addressing mode, the source memory can only be accessed from program memory

only.

 The destination operand is always the register A.

 These are some examples of Indexed addressing mode.

MOVCA, @A+PC; MOVCA, @A+DPTR;

Implied Addressing Mode

 In the implied addressing mode, there will be a single operand.

 These types of instruction can work on specific registers only.

 These types of instructions are also known as register specific instruction.

 Here are some examples of Implied Addressing Mode.

RLA; SWAPA;

 These are 1- byte instruction. The first one is used to rotate the A register content to the Left. The

second one is used to swap the nibbles in A.

6.9-Simple 8051 Assembly Language Programming Arithmetic& Logic

Instructions, JUMP, LOOP, CALL Instructions, I/O Port Programming.

Program

MOVR0, #20H; set source address 20H to R0

MOVR1, #30H; set destination address 30H to R1

MOVA, @R0; take the value from source to register A

MOVR5, A; Move the value from A to R5

MOVR4, #00H; Clear register R4 to store carry

INCR0; Point to the next location

MOVA, @R0; take the value from source to register A

ADDA, R5; Add R5 with A and store to register A

JNC SAVE

INCR4; Increment R4 to get carry

MOVB, R4; Get carry to register B

MOV@R1, B; Store the carry first

INCR1; Increase R1 to point to the next address

SAVE: MOV@R1, A; Store the result

HALT: SJMP HALT; Stop the program

So by adding 5FH + D8H, the result will be 137H. The 01H will be stored at 30H, and 37 is stored at 31H.

Output

112

Address Value

.

.

.

20H 5FH

21H D8H

.

.

.

30H 01H

31H 37H

Write a program to subtract two 8-bit numbers using 8051 microcontroller

Program

 MOV R0, #20H; set source address 20H to R0

 MOV R1, #30H; set destination address 30H to R1

 MOV A, @R0; take the value from source to register A

 MOV R5, A; Move the value from A to R5

 MOV R4, #00H; Clear register R4 to store borrow

 INC R0; Point to the next location

 MOV A, @R0; take the value from source to register A

 MOV R3, A; store second byte

 MOV A, R5; get back the first operand

 SUBB A, R3; Subtract R3 from A

 JNC SAVE

 INC R4; Increment R4 to get borrow

 MOV B, R4; Get borrow to register B

 MOV @R1, B; Store the borrow first

 INC R1; Increase R1 to point to the next address

 SAVE: MOV @R1, A; Store the result

113

 HALT: SJMP HALT; Stop the program

 Output

Address Value

 …

20H 73H

21H BDH

 …

30H 01H

31H B6H

The XOR Instruction

The XOR instruction implements the bitwise XOR operation. The XOR operation sets the resultant bit to 1,

if and only if the bits from the operands are different. If the bits from the operands are same (both 0 or both

1), the resultant bit is cleared to 0.

For example,

 Operand1: 0101

 Operand2: 0011

After XOR -> Operand1: 0110

XORing an operand with itself changes the operand to 0. This is used to clear a register.

XOR EAX, EAX

The TEST Instruction

The TEST instruction works same as the AND operation, but unlike AND instruction, it does not change the

first operand. So, if we need to check whether a number in a register is even or odd, we can also do this

using the TEST instruction without changing the original number.

114

TEST AL, 01H

JZ EVEN_NUMBER

The NOT Instruction

The NOT instruction implements the bitwise NOT operation. NOT operation reverses the bits in an operand.

The operand could be either in a register or in the memory.

For example,

 Operand1: 0101 0011

 After NOT -> Operand1: 1010 1100

Example 1:

 Write a program to clear Accumulator [A], then Add 5 to the accumulator 20 times:

Answer:

;This program adds value 3 to the Accumulator 20 times

 MOV A,#0 ;Accumulator=0, Clear Accumulator

 MOV R2,#20 ;Load counter R2=20

 AGAIN: ADD A,#05 ;Add 05 to Accumulator

 DJNZ R2,AGAIN ;Repeat Until R2=0 [20 times]

 MOV R5,A ;Save Accumulator in R5

 The R2 register is used as a counter.

 The counter R2 is first set to 20. In each iteration, the instruction DJNZ decrements R2 and checks

its value.

 If R2 is not zero, it jumps to the target address associated with label "AGAIN".

 This looping action continues until R2 becomes zero.

 After R2 becomes zero, it falls through the loop and executes the instruction immediately below it,

in this case the "MOV R5, A" instruction.

 In the DJNZ instruction that the registers can be any of R0-R7. The counter can also be a RAM

location.

 In the Example # 1 The R2 holds the count and R2 is an 8-bit register, it can hold a maximum of

FFH [255 Decimal]. The loop can be repeated a maximum of 256 times.

Loop Inside a Loop [NESTED LOOP]:

 The maximum count is 256. But if we want to repeat an action more times than 256, we use a loop

inside a loop, which is called nested loop. In nested loop, we use two registers to hold the count.

Example # 2:

115

 Write a program to load the accumulator with the value 66H, and complement the

accumulator ACC 600 times:

Answer:

 700 is larger than 255 [the maximum capacity of any register], we use two registers to hold the

count. We are using R2, R3 for the count.

 MOV A,$66H ;Accumulator A=66H

 MOV R3,#10 ;R3=10, the outer loop count

NEXT: MOV R2,#60 ;R2=60, the inner loop count

AGAIN: CPL A ;Complement A register

DJNZ R2,AGAIN ;Repeat inner loop 60 times

DJNZ R3,NEXT ;Repeat outer loop 10, so 10X60=600 times

CPL A run

 R2 is used to keep the inner loop count. In the instruction "DJNZ R2, AGAIN", whenever R2

becomes zero, it falls through and "DJNZ R3, NEXT" is executed.

 This instruction forces the CPU to load R2 with the count 60 and the inner loop starts again. This

process will continue until R3 becomes zero and the outer loop is finished.

8051 Conditional Jump Instructions:

Example # 3:

MOV A,R0 ;A = R0

JZ OVER ;Jump if accumulator A = 0

MOV A,R1 ;A = R1

JZ OVER ;Jump if accumulator A = 0

.........

OVER:

 Either R0 or R1 is zero, it jumps to the label OVER. The JZ instruction can be used only for register

accumulator A.

 It can used only check to see whether the Accumulator is zero. It does not apply to any other

register.

116

Example # 4:

Write a program in which if R4 register contains the value 0. Then put 55H in R4 register:

Answer:

MOV A,R4 ;Copy R4 to accumulator A

JNZ NEXT ;Jump if accumulator is not zero

MOV R4,#55H ;Put value 55H into register R4

NEXT:

 JNC [Jump if No Carry i.e. Jumps if Carry Flag = 0]:

6.10-Interrupts, Timer & Counters

Timer & Counter

 A timer is a specialized type of clock which is used to measure time intervals.

 A timer that counts from zero upwards for measuring time is often called a stopwatch.

 It is a device that counts down from a specified time interval and used to generate a time delay, for

example, an hour glass is a timer.

 A counter is a device that stores (and sometimes displays) the number of times a particular event or

process occurred, with respect to a clock signal.

 It is used to count the events happening outside the microcontroller. In electronics, counters can be

implemented quite easily using register-type circuits such as a flip-flop.

Difference between a Timer and a Counter

Timer Counter

The register incremented for every

machine cycle.

The register is incremented considering 1 to 0 transition at

its corresponding to an external input pin (T0, T1).

Maximum count rate is 1/12 of the

oscillator frequency.

Maximum count rate is 1/24 of the oscillator frequency.

A timer uses the frequency of the

internal clock, and generates delay.

A counter uses an external signal to count pulses.

Timers of 8051 and their Associated Registers

 The 8051 has two timers, Timer 0 and Timer 1.

 They can be used as timers or as event counters.

 Both Timer 0 and Timer 1 are 16-bit wide.

 Since the 8051 follows an 8-bit architecture, each 16 bit is accessed as two separate registers of low-

byte and high-byte.

Timer 0 Register

117

 The 16-bit register of Timer 0 is accessed as low- and high-byte.

 The low-byte register is called TL0 (Timer 0 low byte) and the high-byte register is called TH0

(Timer 0 high byte).

 These registers can be accessed like any other register. For example, the instruction MOV TL0,

#4H moves the value into the low-byte of Timer #0.

Timer 1 Register

 The 16-bit register of Timer 1 is accessed as low- and high-byte.

 The low-byte register is called TL1 (Timer 1 low byte) and the high-byte register is called TH1

(Timer 1 high byte).

 For example, the instruction MOV TL1, #4H moves the value into the low-byte of Timer 1.

TMOD (Timer Mode) Register

 Both Timer 0 and Timer 1 use the same register to set the various timer operation modes.

 It is an 8-bit register in which the lower 4 bits are set aside for Timer 0 and the upper four bits for

Timers.

Gate − When set, the timer only runs while INT(0,1) is high.

C/T − Counter/Timer select bit.

M1 − Mode bit 1.

M0 − Mode bit 0.

6.11-Serial Communication

Data communication

 The 8051 microcontroller is parallel device that transfers eight bits of data simultaneously over eight

data lines to parallel I/O devices. Parallel data transfer over a long is very expensive.

 Hence, a serial communication is widely used in long distance communication.

118

 In serial data communication, 8-bit data is converted to serial bits using a parallel in serial out shift

register and then it is transmitted over a single data line.

Basics of serial data communication,

Communication Links

Simplex communication link: In simplex transmission, the line is dedicated for transmission. The

transmitter sends and the receiver receives the data.

Half duplex communication link: In half duplex, the communication link can be used for either transmission

or reception. Data is transmitted in only one direction at a time.

 Receiver

 Transmitter

 Full duplex communication link:

 If the data is transmitted in both ways at the same time, it is a full duplex i.e. transmission and

reception can proceed simultaneously.

 This communication link requires two wires for data, one for transmission and one for reception.

6.12-Microcontroller Interrupts and Interfacing to 8255

Circuit Diagram to interface 8255 PPI with 8051

Step 1:

 Connect the power pins of 8255 by connecting VCC and GND pins to the appropriate sources.

 The EA of 8051 should be connected to VCC as well.

Step 2:

 Pins P3.6 (WR) and P3.7 (RD) are to be connected to the WR and RD pins of 8255, respectively.

Step 3:

 Connect Port 0 to 74LS373 decoder, i.e. P0.0 – P0.7 to 1D – 8D.

 Connect the ALE pin of 8051 to the Enable pin (G) of 74LS373 to activate it.

Step 4:

 Tap the AD0 – AD7 lines of Port 0 and connect it directly to D0 – D7 pins of 8255.

Step 5:

 After DE multiplexing, connect the pins A0 and A1 (from the output of IC74LS373 to the pins A0

and A1 of 8255, respectively.)

Transmitter

Receiver

Transmitter Receiver

Transmitter Receiver

Receiver Transmitter

119

 These two pins indicate the mode in which 8255 is operating.

Step 6:

 The final step is to connect the chip select combinational logic that we designed.

Interrupt in 8051 Microcontroller

 8051 has five interrupts. These interrupts are INT0, INT1,TO ,T1 , TI/RI. All of the interrupts can

be enabled or disabled by using the IE (interrupt enable) register.

 The interrupt addresses of these interrupts are like below −

Interrupt Address

INT0 0003H

INT1 000BH

T0 0013H

T1 001BH

TI/RI 0023H

Interrupt Enable (IE)Register

 This register can be used to enable or disable interrupts programmatically.

 This register is an SFR. The address is A8H.

 This byte is bit addressable. So it can be programmed by the user. The bits in this register has a

different meaning. The register structure is looking like this:

Bit Address AF AE AD AC AB AA A9 A8

Bit Details EA X X ES ET1 EX1 ET0 EX0

https://i0.wp.com/technobyte.org/wp-content/uploads/2020/06/circuitdiagram-1.jpg?ssl=1

120

Now, let us see the bit details and different operations when the value is low (0) and high (1).

Bit

Details

High Value (1) Low Value (0)

EA Least significant 5 bits can decide enable or

disable of these five interrupts.

Disable all five interrupts. It just ignores

the rest five bits.

ES Enable Serial Port Interrupt Disable Serial Port Interrupt

ET1 Enable Timer1 interrupt Disable Timer1 interrupt

EX1 Enable external interrupt 1 (INT1) Disable external interrupt 1 (INT1)

ET0 Enable Timer0 interrupt Disable Timer0 interrupt

EX0 Enable external interrupt 0 (INT0) Disable external interrupt 0 (INT0)

POSSIBLE SHORT TYPE QUESTIONS WITH ANSWER

Q1 Difference between microprocessor and micro controller

 Microprocessor consists of only a Central Processing Unit, whereas Micro Controller

contains a CPU, Memory, I/O all integrated into one chip.

 Microprocessor uses an external bus to interface to RAM, ROM, and other

peripherals, on the other hand, Microcontroller uses an internal controlling bus.

Q2 Define SFR

 The Special Function Register (SFR) is the upper area of addressable memory, from

address 0x80 to 0xFF

 Different status registers are mapped into the SFR, for use in checking the status of

the 8051, and changing some operational parameters of the 8051

Q3-Which port of 8051 is used as address/data bus

 While connecting an 8051 to external memory, Port 0 can provide both address and

data.

 The 8051 microcontrollers then multiplex the input as address or data in order to save

pins.

 Dual role of Port 2 − Besides working as I/O, Port P2 is also used to provide 16-bit

address bus for external memory along with Port 0.

Q4 Difference between CISC and RISC. (S-23)

121

 One of the major differences between RISC and CISC is that RISC emphasizes

efficiency in cycles per instruction and CISC emphasizes efficiency in instructions per

program.

 RISC needs more RAM, whereas CISC has an emphasis on smaller code size and uses

less RAM overall than RISC.

Q5 What are the interrupt are present in 8051. (S-23)

 8051 has 5 interrupt signals, i.e. INT0, TFO, INT1, TF1, RI/TI.

 Each interrupt can be enabled or disabled by setting bits of the IE register and the

whole interrupt system can be disabled by clearing the EA bit of the same register.

Q6- Define serial communication in 8051 mc

 Serial communication is a form of I/O in which the bits of a byte begin transferred

appear one after the other in a timed sequence on a single wire.

 Serial communication has become the standard for inter computer communication. In

this lab, we'll try to build a serial link between 8051 and PC using RS232

Q7- what does @ and # symbol indicate in 8051 micro controllers? Give one example of

 Each. (S-24)

 Ans:-The "@" symbol is typically used to indicate a register address, while the "#" symbol

represents an immediate value that is directly loaded into a register during an instruction.

 Example: - "MOV A, @R0"

 "MOV R1, #50"

Q8-Write various ports available in 8051. (S-24)

 Ans: - The 8051 microcontroller has four 8-bit ports, labeled P0, P1, P2, and P3.

 These ports are bidirectional, meaning they can act as both inputs and outputs.

 Port 0-Can be used as a general-purpose input.

 Port 1-Used for interfacing activities, such as connecting to switches, LEDs.

 Port 2-Can be used as a general-purpose input/output port.

 Port 3-Can be used as an input/output port

POSSIBLE LONG TYPE QUESTIONS

Q1-Explain internal architecture of 8051 with a neat diagram. (S-24)

 Q2-Explain pin description of 8051 mc

Q3 Describe the memory organisation in the 8051 mc. (S-24)

 Q4-Explain different addressing mode of 8051mc

Q5-Explain 8051 mc is interfacing to 8255 with neat diagram.

 Q6-Write short note on timer and counter in 8051 mc

	Program
	Output
	Input
	Program
	Output

	Result:
	Result: (1)
	Input
	Program
	Output
	Input (1)
	Program (1)
	Output (1)

	Timing diagram of various signals
	4.10-Design Interface For Stepper Motor Control Using 8255
	Times of 8051

